Skip to content
/ rvwo Public

A Robust Visual-Wheel SLAM System for Mobile Robots in Dynamic Environments

License

Notifications You must be signed in to change notification settings

be2rlab/rvwo

Repository files navigation

RVWO: A Robust Visual-Wheel SLAM System for Mobile Robots in Dynamic Environments

Introduction

RVWO is a system designed to provide robust localization and mapping for wheeled mobile robots in challenging scenarios. The proposed approach leverages a probabilistic framework that incorporates semantic prior information about landmarks and visual re-projection error to create a landmark reliability model, which acts as an adaptive kernel for the visual residuals in optimization. Additionally, we fuse visual residuals with wheel odometry measurements, taking advantage of the planar motion assumption. The RVWO system is designed to be robust against wrong data association due to moving objects, poor visual texture, bad illumination, and wheel slippage. Evaluation results demonstrate that the proposed system shows competitive results in dynamic environments and outperforms existing approaches on both public benchmarks and on our custom hardware setup.

Contributors

Andrey Penkovskiy, Long Vuong, Jaafar Mahmoud

Acknowledgments

We would like to thank the ORB-SLAM3 developers for a great baseline system.

About

A Robust Visual-Wheel SLAM System for Mobile Robots in Dynamic Environments

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages