-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
using ISOKANN.IsoMu: readchemfile | ||
using ISOKANN: flatpairdists, ISOKANN, run!, AdamRegularized | ||
using ProgressMeter | ||
using JLD2 | ||
using Flux: Flux, cpu, gpu, Dense, Chain | ||
using Infiltrator | ||
using StatsBase: mean, std | ||
using Plots | ||
using Distances: pairwise, Euclidean | ||
using LinearAlgebra: UpperTriangular | ||
using ISOKANN | ||
using Optimisers: Optimisers | ||
|
||
## DATA INGESTION | ||
|
||
# the maximal distance is attained between 14-CA2 and 72-O | ||
|
||
PDB_TEMPLATE = "data/luca/VGVAPG/implicit/input/initial_states/x0_1.pdb" | ||
|
||
function defaultdata() | ||
global DATA | ||
@isdefined(DATA) || (DATA = readsim()) | ||
return DATA | ||
end | ||
|
||
# this loads the vgv dataset into the global namespace | ||
function read_vgvapg(; kwargs...) | ||
readnfgail(dir="data/luca/VGVAPG/implicit"; save="data/luca/vgvapg.jld2", natoms=73, kwargs...) | ||
end | ||
|
||
function read_traj() | ||
ISOKANN.IsoMu.readchemfile("data/luca/VGVAPG/implicit/output/trajectory.dcd") | ||
end | ||
|
||
function readsim(; | ||
dir="data/luca/VGVAPG/implicit", | ||
nx=500, | ||
nk=100, | ||
nt=10) | ||
|
||
xs = stack((readchemfile("$dir/input/initial_states/x0_$(i-1).pdb", 1)[:, :, 1] for i in 1:nx)) | ||
|
||
dim, atoms, nx = size(xs) | ||
ys = similar(xs, dim, atoms, nk, nx, nt) | ||
|
||
for i in 1:nx, k in 1:nk | ||
ys[:, :, k, i, :] .= readchemfile("$dir/output/final_states/xf_$(i-1)_r$(k-1).dcd") | ||
end | ||
|
||
xs, ys | ||
end | ||
|
||
function pairwisedata(; data=defaultdata(), nk=100, lag=10) | ||
xs, ys = data | ||
inds = halfinds(size(xs, 2)) | ||
dx = stack(eachslice(xs, dims=3)) do co | ||
Distances.pairwise(Euclidean(), co |> collect, dims=2) | ||
end[inds, :] ./ 10 | ||
|
||
dy = stack(eachslice(ys[:, :, 1:nk, :, lag], dims=(3, 4))) do co | ||
pairwise(Euclidean(), co, dims=2) | ||
end[inds, :, :] ./ 10 | ||
|
||
|
||
@exfiltrate | ||
return dx, dy | ||
end | ||
|
||
using LinearAlgebra | ||
function halfinds(n) | ||
a = UpperTriangular(ones(n, n)) | ||
a[diagind(a)] .= 0 | ||
findall(a .> 0) | ||
end | ||
|
||
### ISOKANN MODELS | ||
|
||
# a copy of lucas python model | ||
function lucaisokann(; data=pairwisedata(), kwargs...) | ||
model = lucanet2(size(data[1], 1)) | ||
opt = ISOKANN.AdamRegularized(5e-4, 1e-5) | ||
|
||
iso = IsoRunFixedData(; data, model, opt, | ||
minibatch=100, | ||
nd=100, # niters | ||
nl=10, # epochs | ||
kwargs... | ||
) |> gpu | ||
|
||
iso.loggers = [ISOKANN.autoplot(1), reactioncoordlogger(iso)] | ||
return iso | ||
end | ||
|
||
using Flux: Dense | ||
|
||
lucanet1(dim; activation=Flux.sigmoid) = Chain(Dense(dim => 2048, activation), | ||
Dense(2048 => 1024, activation), | ||
Dense(1024 => 512, activation), | ||
Dense(512 => 1, identity)) | ||
|
||
lucanet2(dim; activation=Flux.sigmoid) = Chain(Dense(dim => 204, activation), | ||
Dense(204 => 102, activation), | ||
Dense(102 => 51, activation), | ||
Dense(51 => 1, identity)) | ||
|
||
alexisokann(; data=pairwisedata(), kw...) = lucaisokann(; | ||
data, | ||
model=ISOKANN.pairnet(data), | ||
opt=ISOKANN.AdamRegularized(1e-3, 1e-3), | ||
nd=1000, | ||
nl=1, | ||
kw...) | ||
|
||
|
||
function alex2() | ||
data = pairwisedata() | ||
ISOKANN.Iso2(data, opt=AdamRegularized(1e-4, 1e-3)) | ||
end | ||
|
||
function examplerun() | ||
|
||
iso = alexisokann() |> Flux.gpu | ||
run!(iso) | ||
|
||
ISOKANN.plot_training(iso) |> display | ||
|
||
co = DATA[1] | ||
|
||
export_sorted(iso, coords) | ||
flatcoords = reshape(co, :, size(co, 3)) | ||
ISOKANN.save_reactive_path(Iso2(iso), flatcoords, | ||
sigma=1, | ||
out="out/vgv/reactionpath.pdb", | ||
source=PDB_TEMPLATE) | ||
|
||
return iso | ||
end | ||
|
||
|
||
|
||
|
||
|
||
### | ||
|
||
IsoRunFixedData(; data, kwargs...) = ISOKANN.IsoRun(; | ||
data=data, | ||
model=ISOKANN.pairnet(data), | ||
nd=1, | ||
minibatch=0, | ||
nx=0, # no chi subsampling, | ||
nres=0, # no resampling, | ||
np=1, # power iterations, | ||
nl=1, # weight updates, | ||
sim=nothing, kwargs...) | ||
|
||
|
||
function scatter_reactioncoord(iso, xs=defaultdata()[1]) | ||
rc = sqrt.(sum(abs2, xs[:, 1, :] .- xs[:, 71, :], dims=1)) |> vec | ||
chis = iso.model(iso.data[1]) |> vec |> Flux.cpu | ||
scatter(rc, chis, xlabel="outer atom distance", ylabel="\\chi") | ||
end | ||
|
||
function reactioncoordlogger(iso, xs=defaultdata()[1]) | ||
(; plot=() -> scatter_reactioncoord(iso, xs)) | ||
end | ||
|
||
function plot_longtraj(iso) | ||
xs = read_traj() | ||
inds = halfinds(size(xs, 2)) | ||
dx = stack(eachslice(xs, dims=3)) do co | ||
pairwise(Euclidean(), co, dims=2) | ||
end[inds, :] ./ 10 | ||
vals = iso.model(dx |> gpu) |> cpu |> vec | ||
plot(vals, xlabel="frame #", ylabel="chi", title="long traj") | ||
end | ||
|
||
|
||
|
||
using ISOKANN.IsoMu: aligntrajectory | ||
function export_sorted(iso, xs, path="out/vgv/chisorted.pdb", source="data/luca/VGVAPG/implicit/input/initial_states/x0_1.pdb") | ||
i = sortperm(iso.model(iso.data[1]) |> cpu |> vec) | ||
xs = reshape(xs[:, :, i], :, length(i)) | ||
#xs = ISOKANN.standardform(xs, (21, 28, 44)) | ||
xs = vec.(aligntrajectory(Flux.MLUtils.unbatch(xs))) |> stack | ||
println("saved sorted trajectory to $path") | ||
|
||
ISOKANN.IsoMu.writechemfile(path, xs; source) | ||
end | ||
|
||
|
||
#= | ||
function pairwisedata_my((xs, ys), nk, lag) | ||
nx = size(xs, 3) | ||
xs = reshape(xs, :, nx) | ||
ys = reshape(ys[:, :, 1:nk, :, lag], :, nk, nx) | ||
# note that this is the squared distances | ||
xs = ISOKANN.flatpairdists(xs) .|> sqrt | ||
ys = ISOKANN.flatpairdists(ys) .|> sqrt | ||
inds = halfinds(xs) | ||
return (xs[inds, :], ys[inds, :, :]) | ||
#return normalizedata((xs[inds, :], ys[inds, :, :])) | ||
end | ||
function test(vgv=read_vgvapg()) | ||
d1 = pairwisedata_my(vgv, 100, 10)[1] | ||
d2 = pairwisedata(vgv, 100, 10)[1] | ||
isapprox(d1, d2) | ||
end | ||
## A CHECK HOW GOOD MODELS CAN LEARN A GIVEN DISTANCE | ||
function benchmarkmodels(; reps=3, epochs=10, iso=lucaisokann(), activation=Flux.sigmoid) | ||
dim = size(iso.data[1], 1) | ||
target = let xs = vgv[1] | ||
sqrt.(sum(abs2, xs[:, 1, :] .- xs[:, 71, :], dims=1)) | ||
end |> ISOKANN.shiftscale | ||
plot(target') | ||
for _ in 1:reps | ||
for (model, color) in [(lucanet(dim; activation), :blue), (ISOKANN.pairnet(dim, layers=4; activation), :red)] | ||
iso.model = model | ||
Optimisers.setup(iso) | ||
@time for i in 1:epochs | ||
Flux.train!((m, x, y) -> Flux.mse(m(x), y), iso.model, Flux.DataLoader((iso.data[1], target), batchsize=50), iso.opt) | ||
end | ||
@show Flux.mse(iso.model(iso.data[1]), target) | ||
plot!(iso.model(iso.data[1])'; color) |> display | ||
end | ||
end | ||
plot!() |> display | ||
end | ||
=# |