Skip to content

HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models

License

Notifications You must be signed in to change notification settings

automl/HW-GPT-Bench

Repository files navigation

HW-GPT-Bench

Repository for HW-GPT-Bench- NeurIPS DBT 2024

alt text

Note: We are in the process of updating the benchmark and code, with significant changes to the repository coming soon!

Supernet Checkpoints and Pretrained Surrogates

We release the pretrained supernet checkpoints here, the pretrained hardware surrogates here and the perplexity surrogates here and the list of architectures sampled here.

To install in editable mode (-e) run:

$ git clone https://github.com/automl/HW-Aware-LLM-Bench
$ cd HW-Aware-LLM-Bench
$ pip install -e .

Example api usage

from hwgpt.api import HWGPT
api = HWGPT(search_space="s",use_supernet_surrogate=False) # initialize API
random_arch = api.sample_arch() # sample random arch
api.set_arch(random_arch) # set  arch
results = api.query() # query all for the sampled arch
print("Results: ", results)
energy = api.query(metric="energies") # query energy
print("Energy: ", energy)
rtx2080 = api.query(device="rtx2080") # query device
print("RTX2080: ", rtx2080)
# query perplexity based on mlp predictor
perplexity_mlp = api.query(metric="perplexity",predictor="mlp")
print("Perplexity MLP: ", perplexity_mlp)

Citation

If you find HW-GPT Bench useful, you can cite us using:

@article{sukthanker2024hw,
  title={HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models},
  author={Sukthanker, Rhea Sanjay and Zela, Arber and Staffler, Benedikt and Klein, Aaron and Franke, Jorg KH and Hutter, Frank},
  journal={arXiv preprint arXiv:2405.10299},
  year={2024}
}

About

HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •