Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Continuum normalization #291

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
278 changes: 278 additions & 0 deletions specutils/fitting/spline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
from __future__ import print_function, division, absolute_import

import numpy as np
from scipy import interpolate
import warnings

from astropy.modeling.core import FittableModel, Fittable1DModel, Model
from astropy.modeling.functional_models import Shift
from astropy.modeling.parameters import Parameter
from astropy.modeling.utils import poly_map_domain, comb
from astropy.modeling.fitting import _FitterMeta, fitter_unit_support
from astropy.utils import indent, check_broadcast
from astropy.units import Quantity

__all__ = []


class SplineModel(Fittable1DModel):
"""
Wrapper around scipy.interpolate.splrep and splev

Analogous to scipy.interpolate.UnivariateSpline() if knots unspecified,
and scipy.interpolate.LSQUnivariateSpline if knots are specified

There are two ways to make a spline model.
1. you have the spline auto-determine knots from the data
2. you specify the knots
"""

def __init__(self, degree=3, smoothing=None, knots=None,
extrapolate_mode=0, *args, **kwargs):
"""
Set up a spline model.

degree: degree of the spline (default 3)
In scipy fitpack, this is "k"

smoothing (optional): smoothing value for automatically determining knots
In scipy fitpack, this is "s"
By default, uses s = len(w) (see scipy.interpolate.UnivariateSpline)

knots (optional): spline knots (boundaries of piecewise polynomial)
If not specified, will automatically determine knots based on
degree + smoothing. The fit is identical to scipy.interpolate.UnivariateSpline.
If specified, analogous to scipy.interpolate.LSQUnivariateSpline.

extrapolate_mode (optional): how to deal with solution outside of interval.
(see scipy.interpolate.splev)
if 0 (default): return the extrapolated value
if 1, return 0
if 2, raise a ValueError
if 3, return the boundary value
"""

self._param_names = ()

self._degree = degree
self._smoothing = smoothing
self._knots = self.verify_knots(knots)
self.extrapolate_mode = extrapolate_mode

# This is used to evaluate the spline. When None, raises an error when
# trying to evaluate the spline.
self._tck = None

super().__init__(*args, **kwargs)

def verify_knots(self, knots):
"""
Basic knot array vetting. The goal of having this is to enable more
useful error messages than scipy (if needed).
"""
if knots is None:
return None

knots = np.array(knots)
assert len(knots.shape) == 1, knots.shape
knots = np.sort(knots)
assert len(np.unique(knots)) == len(knots), knots

return knots

# Getters
@property
def degree(self):
""" Spline degree (k in FITPACK) """
return self._degree

@property
def smoothing(self):
""" Spline smoothing (s in FITPACK) """
return self._smoothing

@property
def knots(self):
""" Spline knots (t in FITPACK) """
return self._knots

@property
def coeffs(self):
""" Spline coefficients (c in FITPACK) """
if self._tck is not None:
return self._tck[1]
else:
raise RuntimeError("SplineModel has not been fit yet.")

# Setters
def reset_model(self):
""" Resets model so it needs to be refit to be valid """
self._tck = None
self._param_names = ()

@degree.setter
def degree(self, degree):
""" Spline degree (k in FITPACK) """
self._degree = degree
self.reset_model()

@smoothing.setter
def smoothing(self, smoothing):
""" Spline smoothing (s in FITPACK) """
self._smoothing = smoothing
self.reset_model()

@knots.setter
def knots(self, knots):
""" Spline knots (t in FITPACK) """
self._knots = self.verify_knots(knots)
self.reset_model()

def set_model_from_tck(self, tck):
"""
Main way to update model
Use output of scipy.interpolate.splrep
"""
t, c, k = tck
self.degree = k
self.knots = t[k:-k]
self._tck = tck
self._param_names = self._generate_coeff_names()

# Spline methods
def derivative(self, n=1):
if self._tck is None:
raise RuntimeError("SplineModel has not been fit yet")
else:
ext = 1 if self.extrapolate_mode == 3 else self.extrapolate_mode
new_tck = interpolate.fitpack.splder(self._tck, n)
newmodel = SplineModel(degree=self.degree, smoothing=self.smoothing,
knots=self.knots, extrapolate_mode=ext)
newmodel.set_model_from_tck(new_tck)
return newmodel

def antiderivative(self, n=1):
if self._tck is None:
raise RuntimeError("SplineModel has not been fit yet.")
else:
new_tck = interpolate.fitpack.splantider(self._tck, n)
newmodel = SplineModel(degree=self.degree, smoothing=self.smoothing,
knots=self.knots, extrapolate_mode=self.extrapolate_mode)
newmodel.set_model_from_tck(new_tck)
return newmodel

def integral(self, a, b):
if self._tck is None:
raise RuntimeError("SplineModel has not been fit yet.")
else:
t, c, k = self._tck
return interpolate.dfitpack.splint(t, c, k, a, b)

def derivatives(self, x):
if self._tck is None:
raise RuntimeError("SplineModel has not been fit yet.")
else:
t, c, k = self._tck
d, ier = interpolate.dfitpack.spalde(t, c, k, x)
if not ier == 0:
raise ValueError("Error code returned by spalde: %s" % ier)
return d

def roots(self):
if self._tck is None:
raise RuntimeError("SplineModel has not been fit yet.")
t, c, k = self._tck
if k == 3:
z, m, ier = interpolate.dfitpack.sproot(t, c)
if not ier == 0:
raise ValueError("Error code returned by spalde: %s" % ier)
return z[:m]
raise NotImplementedError('finding roots unsupported for '
'non-cubic splines')

def __call__(self, x, der=0):
"""
Evaluate the model with the given inputs.
der is passed to scipy.interpolate.splev
"""
if self._tck is None:
raise RuntimeError("SplineModel has not been fit yet.")

return interpolate.splev(x, self._tck, der=der, ext=self.extrapolate_mode)

# Stuff below here is stubs
# TODO: fill out methods
@property
def param_names(self):
"""
Coefficient names generated based on the model's knots and polynomial degree.
Not Implemented
"""
#raise NotImplementedError("SplineModel does not currently expose parameters")
warnings.warn("SplineModel does not currently expose parameters\n"
"Will only work with SplineFitter")
try:
return self._param_names
except AttributeError:
return ()

def _generate_coeff_names(self):
names = []
degree, Nknots = self._degree, len(self._knots)
for i in range(Nknots):
for j in range(degree+1):
names.append("k{}_c{}".format(i,j))
return tuple(names)

def evaluate(self, *args, **kwargs):
return self(*args, **kwargs)


class SplineFitter(metaclass=_FitterMeta):
"""
Run a spline fit.
"""
def __init__(self):
self.fit_info = {"fp": None,
"ier": None,
"msg": None}
super().__init__()

def validate_model(self, model):
if not isinstance(model, SplineModel):
raise ValueError("model must be of type SplineModel (currently is {})".format(
type(model)))

# TODO do something about units
# @fitter_unit_support
def __call__(self, model, x, y, w=None):
"""
Fit a spline model to data.
Internally uses scipy.interpolate.splrep.

"""

self.validate_model(model)

# Case (1): fit smoothing spline
if model.knots is None:
tck, fp, ier, msg = interpolate.splrep(x, y, w=w,
t=None,
k=model.degree,
s=model.smoothing,
task=0, full_output=True
)
# Case (2): leastsq spline
else:
knots = model.knots
## TODO some sort of validation that the knots are internal, since
## this procedure automatically adds knots at the two endpoints
tck, fp, ier, msg = interpolate.splrep(x, y, w=w,
t=knots,
k=model.degree,
s=model.smoothing,
task=-1, full_output=True
)

model.set_model_from_tck(tck)
self.fit_info.update({"fp": fp, "ier": ier, "msg": msg})
Loading