Skip to content

Latest commit

 

History

History
334 lines (249 loc) · 13.6 KB

install_linux_gpu.md

File metadata and controls

334 lines (249 loc) · 13.6 KB

Install IPEX-LLM on Linux with Intel GPU

This guide demonstrates how to install IPEX-LLM on Linux with Intel GPUs. It applies to Intel Data Center GPU Flex Series and Max Series, as well as Intel Arc Series GPU.

IPEX-LLM currently supports the Ubuntu 20.04 operating system and later, and supports PyTorch 2.0 and PyTorch 2.1 on Linux. This page demonstrates IPEX-LLM with PyTorch 2.1. Check the Installation page for more details.

Table of Contents

Install Prerequisites

Install GPU Driver

For Linux kernel 6.2

  • Install wget, gpg-agent

    sudo apt-get install -y gpg-agent wget
    wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
    sudo gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
    echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | \
    sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
  • Install drivers

    sudo apt-get update
    
    # Install out-of-tree driver
    sudo apt-get -y install \
        gawk \
        dkms \
        linux-headers-$(uname -r) \
        libc6-dev
    sudo apt install intel-i915-dkms intel-fw-gpu
    
    # Install Compute Runtime
    sudo apt-get install -y udev \
        intel-opencl-icd intel-level-zero-gpu level-zero \
        intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
        libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
        libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
        mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo
    
    sudo reboot
  • Configure permissions

    sudo gpasswd -a ${USER} render
    newgrp render
    
    # Verify the device is working with i915 driver
    sudo apt-get install -y hwinfo
    hwinfo --display

For Linux kernel 6.5

  • Install wget, gpg-agent

    sudo apt-get install -y gpg-agent wget
    wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
    sudo gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
    echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | \
    sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
  • Install drivers

    sudo apt-get update
    
    # Install out-of-tree driver
    sudo apt-get -y install \
        gawk \
        dkms \
        linux-headers-$(uname -r) \
        libc6-dev
    sudo apt install -y intel-i915-dkms intel-fw-gpu
    
    # Install Compute Runtime
    sudo apt-get install -y udev \
        intel-opencl-icd intel-level-zero-gpu level-zero \
        intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
        libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
        libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
        mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo
    
    sudo reboot
  • Configure permissions

    sudo gpasswd -a ${USER} render
    newgrp render
    
    # Verify the device is working with i915 driver
    sudo apt-get install -y hwinfo
    hwinfo --display

(Optional) Update Level Zero on Intel Core™ Ultra iGPU

For Intel Core™ Ultra integrated GPU, please make sure level_zero version >= 1.3.28717. The level_zero version can be checked with sycl-ls, and verison will be tagged behind [ext_oneapi_level_zero:gpu].

Here are the sample output of sycl-ls:

[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Core(TM) Ultra 5 125H OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) Graphics OpenCL 3.0 NEO  [24.09.28717.12]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) Graphics 1.3 [1.3.28717]

If you have level_zero version < 1.3.28717, you could update as follows:

wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.16238.4/intel-igc-core_1.0.16238.4_amd64.deb
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.16238.4/intel-igc-opencl_1.0.16238.4_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/24.09.28717.12/intel-level-zero-gpu-dbgsym_1.3.28717.12_amd64.ddeb
wget https://github.com/intel/compute-runtime/releases/download/24.09.28717.12/intel-level-zero-gpu_1.3.28717.12_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/24.09.28717.12/intel-opencl-icd-dbgsym_24.09.28717.12_amd64.ddeb
wget https://github.com/intel/compute-runtime/releases/download/24.09.28717.12/intel-opencl-icd_24.09.28717.12_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/24.09.28717.12/libigdgmm12_22.3.17_amd64.deb
sudo dpkg -i *.deb

Install oneAPI

wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null

echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | sudo tee /etc/apt/sources.list.d/oneAPI.list

sudo apt update

sudo apt install intel-oneapi-common-vars=2024.0.0-49406 \
  intel-oneapi-common-oneapi-vars=2024.0.0-49406 \
  intel-oneapi-diagnostics-utility=2024.0.0-49093 \
  intel-oneapi-compiler-dpcpp-cpp=2024.0.2-49895 \
  intel-oneapi-dpcpp-ct=2024.0.0-49381 \
  intel-oneapi-mkl=2024.0.0-49656 \
  intel-oneapi-mkl-devel=2024.0.0-49656 \
  intel-oneapi-mpi=2021.11.0-49493 \
  intel-oneapi-mpi-devel=2021.11.0-49493 \
  intel-oneapi-dal=2024.0.1-25 \
  intel-oneapi-dal-devel=2024.0.1-25 \
  intel-oneapi-ippcp=2021.9.1-5 \
  intel-oneapi-ippcp-devel=2021.9.1-5 \
  intel-oneapi-ipp=2021.10.1-13 \
  intel-oneapi-ipp-devel=2021.10.1-13 \
  intel-oneapi-tlt=2024.0.0-352 \
  intel-oneapi-ccl=2021.11.2-5 \
  intel-oneapi-ccl-devel=2021.11.2-5 \
  intel-oneapi-dnnl-devel=2024.0.0-49521 \
  intel-oneapi-dnnl=2024.0.0-49521 \
  intel-oneapi-tcm-1.0=1.0.0-435

image-20240221102252565

image-20240221102252565

Setup Python Environment

Download and install the Miniforge as follows if you don't have conda installed on your machine:

wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
bash Miniforge3-Linux-x86_64.sh
source ~/.bashrc

You can use conda --version to verify you conda installation.

After installation, create a new python environment llm:

conda create -n llm python=3.11

Activate the newly created environment llm:

conda activate llm

Install ipex-llm

With the llm environment active, use pip to install ipex-llm for GPU. Choose either US or CN website for extra-index-url:

  • For US:

    pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
  • For CN:

    pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/

Note

If you encounter network issues while installing IPEX, refer to this guide for troubleshooting advice.

Verify Installation

  • You can verify if ipex-llm is successfully installed by simply importing a few classes from the library. For example, execute the following import command in the terminal:

    source /opt/intel/oneapi/setvars.sh
    
    python
    
    > from ipex_llm.transformers import AutoModel, AutoModelForCausalLM

Runtime Configurations

To use GPU acceleration on Linux, several environment variables are required or recommended before running a GPU example. Choose corresponding configurations based on your GPU device:

  • For Intel Arc™ A-Series and Intel Data Center GPU Flex:

    For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series, we recommend:

    # Configure oneAPI environment variables. Required step for APT or offline installed oneAPI.
    # Skip this step for PIP-installed oneAPI since the environment has already been configured in LD_LIBRARY_PATH.
    source /opt/intel/oneapi/setvars.sh
    
    # Recommended Environment Variables for optimal performance
    export USE_XETLA=OFF
    export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
    export SYCL_CACHE_PERSISTENT=1
  • For Intel Data Center GPU Max:

    For Intel Data Center GPU Max Series, we recommend:

    # Configure oneAPI environment variables. Required step for APT or offline installed oneAPI.
    # Skip this step for PIP-installed oneAPI since the environment has already been configured in LD_LIBRARY_PATH.
    source /opt/intel/oneapi/setvars.sh
    
    # Recommended Environment Variables for optimal performance
    export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
    export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
    export SYCL_CACHE_PERSISTENT=1
    export ENABLE_SDP_FUSION=1

    Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10

Note

Please refer to this guide for more details regarding runtime configuration.

A Quick Example

Now let's play with a real LLM. We'll be using the phi-1.5 model, a 1.3 billion parameter LLM for this demostration. Follow the steps below to setup and run the model, and observe how it responds to a prompt "What is AI?".

  • Step 1: Activate the Python environment llm you previously created:

    conda activate llm
  • Step 2: Follow Runtime Configurations Section above to prepare your runtime environment.

  • Step 3: Create a new file named demo.py and insert the code snippet below.

    # Copy/Paste the contents to a new file demo.py
    import torch
    from ipex_llm.transformers import AutoModelForCausalLM
    from transformers import AutoTokenizer, GenerationConfig
    generation_config = GenerationConfig(use_cache = True)
    
    tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", trust_remote_code=True)
    # load Model using ipex-llm and load it to GPU
    model = AutoModelForCausalLM.from_pretrained(
        "tiiuae/falcon-7b", load_in_4bit=True, cpu_embedding=True, trust_remote_code=True)
    model = model.to('xpu')
    
    # Format the prompt
    question = "What is AI?"
    prompt = " Question:{prompt}\n\n Answer:".format(prompt=question)
    # Generate predicted tokens
    with torch.inference_mode():
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
        # warm up one more time before the actual generation task for the first run, see details in `Tips & Troubleshooting`
        # output = model.generate(input_ids, do_sample=False, max_new_tokens=32, generation_config = generation_config)
        output = model.generate(input_ids, do_sample=False, max_new_tokens=32, generation_config = generation_config).cpu()
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
        print(output_str)

    Note:

    When running LLMs on Intel iGPUs with limited memory size, we recommend setting cpu_embedding=True in the from_pretrained function. This will allow the memory-intensive embedding layer to utilize the CPU instead of GPU.

  • Step 5. Run demo.py within the activated Python environment using the following command:

    python demo.py

Example output

Example output on a system equipped with an 11th Gen Intel Core i7 CPU and Iris Xe Graphics iGPU:

Question:What is AI?
Answer: AI stands for Artificial Intelligence, which is the simulation of human intelligence in machines.

Tips & Troubleshooting

Warmup for optimial performance on first run

When running LLMs on GPU for the first time, you might notice the performance is lower than expected, with delays up to several minutes before the first token is generated. This delay occurs because the GPU kernels require compilation and initialization, which varies across different GPU types. To achieve optimal and consistent performance, we recommend a one-time warm-up by running model.generate(...) an additional time before starting your actual generation tasks. If you're developing an application, you can incorporate this warmup step into start-up or loading routine to enhance the user experience.