Skip to content

Commit

Permalink
Merge pull request #127 from amosproj/110-docs
Browse files Browse the repository at this point in the history
110 docs
  • Loading branch information
mollle authored Jan 20, 2025
2 parents 1524b06 + 2ed654d commit 2e7b670
Show file tree
Hide file tree
Showing 5 changed files with 25 additions and 10 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
::: src.sdk.python.rtdip_sdk.pipelines.data_quality.data_manipulation.spark.prediction.arima
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
::: src.sdk.python.rtdip_sdk.pipelines.data_quality.data_manipulation.spark.prediction.auto_arima
28 changes: 22 additions & 6 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -236,18 +236,34 @@ nav:
- Deploy:
- Databricks: sdk/code-reference/pipelines/deploy/databricks.md
- Data Quality:
- Monitoring:
- Monitoring:
- Check Value Ranges: sdk/code-reference/pipelines/data_quality/monitoring/spark/check_value_ranges.md
- Great Expectations:
- Data Quality Monitoring: sdk/code-reference/pipelines/data_quality/monitoring/spark/great_expectations.md
- Great Expectations:
- Data Quality Monitoring: sdk/code-reference/pipelines/data_quality/monitoring/spark/great_expectations.md
- Flatline Detection: sdk/code-reference/pipelines/data_quality/monitoring/spark/flatline_detection.md
- Identify Missing Data:
- Interval Based: sdk/code-reference/pipelines/data_quality/monitoring/spark/identify_missing_data_interval.md
- Pattern Based: sdk/code-reference/pipelines/data_quality/monitoring/spark/identify_missing_data_pattern.md
- Data Manipulation:
- Data Manipulation:
- Duplicate Detection: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/duplicate_detection.md
- Filter Out of Range Values: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/delete_out_of_range_values.md
- Filter Out of Range Values: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/out_of_range_value_filter.md
- Flatline Filter: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/flatline_filter.md
- Dimensionality Reduction: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/dimensionality_reduction.md
- Interval Filtering: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/interval_filtering.md
- K-Sigma Anomaly Detection: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/k_sigma_anomaly_detection.md
- Missing Value Imputation: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/missing_value_imputation.md
- Normalization:
- Normalization: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/normalization/normalization.md
- Normalization Mean: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/normalization/normalization_mean.md
- Normalization MinMax: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/normalization/normalization_minmax.md
- Normalization ZScore: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/normalization/normalization_zscore.md
- Prediction:
- Arima: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/prediction/arima.md
- Auto Arima: sdk/code-reference/pipelines/data_quality/data_manipulation/spark/prediction/auto_arima.md
- Machine Learning:
- Data Binning: sdk/code-reference/pipelines/machine_learning/spark/data_binning.md
- Linear Regression: sdk/code-reference/pipelines/machine_learning/spark/linear_regression.md

- Jobs: sdk/pipelines/jobs.md
- Deploy:
- Databricks Workflows: sdk/pipelines/deploy/databricks.md
Expand Down Expand Up @@ -339,4 +355,4 @@ nav:
- blog/index.md
- University:
- University: university/overview.md


Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,6 @@ class ArimaPrediction(DataManipulationBaseInterface, InputValidator):
timestamp_name (str): Name of column, where event timestamps are stored
source_name (str): Name of column in source-based format, where source of events are stored
status_name (str): Name of column in source-based format, where status of events are stored
# Options for ARIMA
external_regressor_names (List[str]): Currently not working. Names of the columns with data to use for prediction, but not extend
number_of_data_points_to_predict (int): Amount of points to forecast
number_of_data_points_to_analyze (int): Amount of most recent points to train on
Expand Down Expand Up @@ -319,7 +318,7 @@ def filter(self) -> PySparkDataFrame:
value imputation to prevent learning on dirty data.
Returns:
DataFrame: A PySpark DataFrame with forcasted value entries depending on constructor parameters.
DataFrame: A PySpark DataFrame with forecasted value entries depending on constructor parameters.
"""
# expected_scheme = StructType(
# [
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,6 @@ class ArimaAutoPrediction(ArimaPrediction):
number_of_data_points_to_predict (int): Amount of points to forecast
number_of_data_points_to_analyze (int): Amount of most recent points to train on
seasonal (bool): Setting for AutoArima, is past_data seasonal?
# Options for ARIMA
trend (str): ARIMA-Specific setting
enforce_stationarity (bool): ARIMA-Specific setting
enforce_invertibility (bool): ARIMA-Specific setting
concentrate_scale (bool): ARIMA-Specific setting
Expand Down

0 comments on commit 2e7b670

Please sign in to comment.