-
Notifications
You must be signed in to change notification settings - Fork 219
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d2e7d08
commit caadd61
Showing
20 changed files
with
1,395 additions
and
88 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
import logging | ||
import copy | ||
import torch | ||
import random | ||
import numpy as np | ||
from federatedscope.core.aggregators import ClientsAvgAggregator | ||
from federatedscope.core.aggregators.krum_aggregator import KrumAggregator | ||
from federatedscope.core.aggregators.median_aggregator import MedianAggregator | ||
from federatedscope.core.aggregators.trimmedmean_aggregator import \ | ||
TrimmedmeanAggregator | ||
from federatedscope.core.aggregators.bulyan_aggregator import \ | ||
BulyanAggregator | ||
|
||
class Fang_adaptive_attacks(): | ||
""" | ||
Define the Fang_adaptive_attacks with can attack a specific aggregation rule with pertinence. | ||
""" | ||
|
||
def __init__(self, model=None, device='cpu',config=None): | ||
self.str2defense = {'krum': KrumAggregator(model,device,config)._para_avg_with_krum, | ||
'median': MedianAggregator(model,device,config)._aggre_with_median, | ||
'trmean': TrimmedmeanAggregator(model,device,config)._aggre_with_trimmedmean, | ||
'bulyan': BulyanAggregator(model,device,config)._aggre_with_bulyan} | ||
self.byzantine_node_num = config.aggregator.byzantine_node_num | ||
self.config = config | ||
self.model = model | ||
|
||
|
||
def compute_lambda(self, model_re, all_updates, model_byzantine): | ||
""" | ||
Calculate an upper bound of the scaling factor used in Fang_krum attack. | ||
""" | ||
distances = [] | ||
n_benign, d = all_updates.shape | ||
for update in all_updates: | ||
distance = torch.norm((all_updates - update), dim=1) | ||
distances = distance[None, :] if not len(distances) else torch.cat((distances, distance[None, :]), 0) | ||
distances[distances == 0] = 10000 | ||
distances = torch.sort(distances, dim=1)[0] | ||
scores = torch.sum(distances[:, :n_benign - 2 - len(model_byzantine)], dim=1) | ||
min_score = torch.min(scores) | ||
term_1 = min_score / ((n_benign - len(model_byzantine) - 1) * torch.sqrt(torch.Tensor([d]))[0]) | ||
max_wre_dist = torch.max(torch.norm((all_updates - model_re), dim=1)) / (torch.sqrt(torch.Tensor([d]))[0]) | ||
return term_1 + max_wre_dist | ||
|
||
def fang_krum(self, models): | ||
""" | ||
Please refer to "Local model poisoning attacks to byzantine-robust federated learning" | ||
https://www.usenix.org/system/files/sec20-fang.pdf | ||
""" | ||
all_updates = torch.stack([each_model[0][1] for each_model in models]) | ||
model_re = torch.mean(all_updates, 0) | ||
deviation = torch.sign(model_re) | ||
model_byzantine = list() | ||
mal_id = {} | ||
index_ = [] | ||
for index, model in enumerate(models): | ||
if model[1] < self.byzantine_node_num + 1: | ||
mal_id[model[1]] = model[0][0] | ||
model_byzantine.append(model[0]) | ||
index_.append(index) | ||
for i in range(len(index_) - 1, -1, -1): | ||
models.pop(index_[i]) | ||
agg_update = copy.deepcopy(model_re) | ||
lamda = self.compute_lambda(agg_update, all_updates, model_byzantine) | ||
threshold = 1e-5 | ||
mal_update = [] | ||
while lamda > threshold: | ||
mal_update = agg_update - lamda * deviation | ||
for id in mal_id: | ||
mal_update = self._insert_the_bn(mal_update, mal_id[id][1]) | ||
models.append(((mal_id[id][0], mal_update), id)) | ||
agg_num = self.config.aggregator.fang_krum_agg_num | ||
_, krum_candidate = self.str2defense['krum'](models, agg_num) | ||
for i in range(len(model_byzantine)): | ||
models.pop(-1) | ||
if krum_candidate[0] < self.byzantine_node_num + 1: | ||
for id in mal_id: | ||
models.append(((mal_id[id][0], mal_update), id)) | ||
return models | ||
else: | ||
mal_update = [] | ||
lamda *= 0.5 | ||
if not len(mal_update): | ||
mal_update = agg_update - lamda * deviation | ||
for id in mal_id: | ||
models.append(((mal_id[id][0], mal_update), id)) | ||
return models | ||
|
||
######## fang attack median ################################# | ||
|
||
def fang_median(self, models): | ||
""" | ||
Please refer to "Local model poisoning attacks to byzantine-robust federated learning" | ||
https://www.usenix.org/system/files/sec20-fang.pdf | ||
""" | ||
model_byzantine = list() | ||
mal_id = {} | ||
index_ = [] | ||
for index, model in enumerate(models): | ||
if model[1] < self.byzantine_node_num + 1: | ||
mal_id[model[1]] = model[0][0] | ||
model_byzantine.append(model[0]) | ||
index_.append(index) | ||
for i in range(len(index_) - 1, -1, -1): | ||
models.pop(index_[i]) | ||
if len(model_byzantine) == 0: | ||
return models | ||
else: | ||
temp = torch.stack([each_model[0][1] for each_model in models], 0) | ||
model_re = torch.mean(temp, 0) | ||
if len(model_byzantine) == 1: | ||
model_std = torch.zeros_like(model_re) | ||
else: | ||
model_std = torch.std(temp, 0) | ||
deviation = torch.sign(model_re) | ||
max_vector_low = model_re + 3 * model_std | ||
max_vector_hig = model_re + 4 * model_std | ||
min_vector_low = model_re - 4 * model_std | ||
min_vector_hig = model_re - 3 * model_std | ||
max_range = torch.cat((max_vector_low[:, None], max_vector_hig[:, None]), dim=1) | ||
min_range = torch.cat((min_vector_low[:, None], min_vector_hig[:, None]), dim=1) | ||
rand = torch.from_numpy(np.random.uniform(0, 1, [len(deviation), len(model_byzantine)])).type( | ||
torch.FloatTensor) # 【800,4】 | ||
max_rand = torch.stack([max_range[:, 0]] * rand.shape[1]).T + rand * torch.stack( | ||
[max_range[:, 1] - max_range[:, 0]] * rand.shape[1]).T | ||
min_rand = torch.stack([min_range[:, 0]] * rand.shape[1]).T + rand * torch.stack( | ||
[min_range[:, 1] - min_range[:, 0]] * rand.shape[1]).T | ||
former = torch.stack([(deviation < 0).type(torch.FloatTensor)] * max_rand.shape[1]).T * max_rand | ||
latter = torch.stack([(deviation > 0).type(torch.FloatTensor)] * min_rand.shape[1]).T * min_rand | ||
mal_vec = (former + latter).T | ||
tuple_ = torch.chunk(mal_vec, len(model_byzantine), dim=0) | ||
i = 0 | ||
for id in mal_id: | ||
fake_update = tuple_[i].reshape(model_re.shape) | ||
models.append(((mal_id[id][0], fake_update), id)) | ||
i += 1 | ||
return models | ||
|
||
|
||
##### methods to transform the model update and tensor #### | ||
def _flatten_updates(self, model): | ||
model_update=[] | ||
init_model = self.model.state_dict() | ||
for key in init_model: | ||
model_update.append(model[key].view(-1)) | ||
return torch.cat(model_update, dim = 0) | ||
|
||
def _flatten_updates_without_bn(self, model): | ||
model_update=[] | ||
init_model = self.model.state_dict() | ||
for key in init_model: | ||
if 'bn' not in key: | ||
model_update.append(model[key].view(-1)) | ||
return torch.cat(model_update, dim = 0) | ||
|
||
def _reconstruct_updates(self, flatten_updates): | ||
start_idx = 0 | ||
init_model = self.model.state_dict() | ||
reconstructed_model = copy.deepcopy(init_model) | ||
for key in init_model: | ||
reconstructed_model[key] = flatten_updates[start_idx:start_idx+len(init_model[key].view(-1))].reshape(init_model[key].shape) | ||
start_idx=start_idx+len(init_model[key].view(-1)) | ||
return reconstructed_model | ||
|
||
def _extract_the_bn(self, model): | ||
temp_model = copy.deepcopy(self.model.state_dict()) | ||
model = self._reconstruct_updates(model) | ||
bn_dict={} | ||
for key in temp_model: | ||
if 'bn' in key: | ||
bn_dict[key] = model[key] | ||
return bn_dict | ||
|
||
def _insert_the_bn(self, model_tensor, dict): | ||
model = self._reconstruct_updates(model_tensor) | ||
for key in dict: | ||
model[key] = dict[key] | ||
return self._flatten_updates(model) |
Oops, something went wrong.