Skip to content

alexandrduduka/ai-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 

Repository files navigation

Lists of all AI related learning materials and practical tools to get started with AI apps


Fork of: https://github.com/gopala-kr/ai-learning-roadmap


Design Thinking – An Introduction

Google Cloud - Learning Material

Below is the learning material that will help you learn about Google Cloud.

Network

The codelab provides common cloud developer experience as follows:

  • Set up your lab environment and learn how to work with your GCP environment.
  • Use of common open source tools to explore your network around the world.
  • Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server.
  • Testing and monitoring your network and instances.
  • Cleanup.

Developing Solutions for Google Cloud Platform – 8 hours

Infrastructure

Data

AI, Big Data & Machine Learning

Additional AI Materials

(Optional) Deep Learning & Tensorflow

Additional Reference Material


Lecture Videos

<title></title> <script src="js/navigation.js"></script>

Source Berkeley

Lecture TitleLecturerSemester
Lecture 1 Introduction Dan Klein Fall 2012
Lecture 2 Uninformed Search Dan Klein Fall 2012
Lecture 3 Informed Search Dan Klein Fall 2012
Lecture 4 Constraint Satisfaction Problems I Dan Klein Fall 2012
Lecture 5 Constraint Satisfaction Problems II Dan Klein Fall 2012
Lecture 6 Adversarial Search Dan Klein Fall 2012
Lecture 7 Expectimax and Utilities Dan Klein Fall 2012
Lecture 8 Markov Decision Processes I Dan Klein Fall 2012
Lecture 9 Markov Decision Processes II Dan Klein Fall 2012
Lecture 10 Reinforcement Learning I Dan Klein Fall 2012
Lecture 11 Reinforcement Learning II Dan Klein Fall 2012
Lecture 12 Probability Pieter Abbeel Spring 2014
Lecture 13 Markov Models Pieter Abbeel Spring 2014
Lecture 14 Hidden Markov Models Dan Klein Fall 2013
Lecture 15 Applications of HMMs / Speech Pieter Abbeel Spring 2014
Lecture 16 Bayes' Nets: Representation Pieter Abbeel Spring 2014
Lecture 17 Bayes' Nets: Independence Pieter Abbeel Spring 2014
Lecture 18 Bayes' Nets: Inference Pieter Abbeel Spring 2014
Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Fall 2013
Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Spring 2014
Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Spring 2014
Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Spring 2014
Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Spring 2014
Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Spring 2014
Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Spring 2014

Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below:

Lecture TitleLecturerNotes
SBS-1 DFS and BFS Pieter Abbeel Lec: Uninformed Search
SBS-2 A* Search Pieter Abbeel Lec: Informed Search
SBS-3 Alpha-Beta Pruning Pieter Abbeel Lec: Adversarial Search
SBS-4 D-Separation Pieter Abbeel Lec: Bayes' Nets: Independence
SBS-5 Elimination of One Variable Pieter Abbeel Lec: Bayes' Nets: Inference
SBS-6 Variable Elimination Pieter Abbeel Lec: Bayes' Nets: Inference
SBS-7 Sampling Pieter Abbeel Lec: Bayes' Nets: Sampling
SBS-8 Maximum Likelihood Pieter Abbeel Lec: Machine Learning: Naive Bayes
SBS-9 Laplace Smoothing Pieter Abbeel Lec: Machine Learning: Naive Bayes
SBS-10 Perceptrons Pieter Abbeel Lec: Machine Learning: Perceptrons
******************

The Many Tribes of Artificial Intelligence

Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53


******************

The Deep Learning Roadmap

Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a


******************

Best Practices for Training Deep Learning Networks

Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53


ML/DL Cheatsheets

Neural Network Architectures

Source: http://www.asimovinstitute.org/neural-network-zoo/



Microsoft Azure Algorithm Flowchart

Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet



SAS Algorithm Flowchart

Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/


******************

Algorithm Summary

Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/


****************** Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/


****************** ### Algorithm Pro/Con Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend


******************

Python


Algorithms

Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/


******************

Python Basics

Source: http://datasciencefree.com/python.pdf


******************

Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA


******************

Numpy

Source: https://www.dataquest.io/blog/numpy-cheat-sheet/


******************

Source: http://datasciencefree.com/numpy.pdf


******************

Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE



Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb


******************

Pandas

Source: http://datasciencefree.com/pandas.pdf


******************

Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U


******************

Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb



Matplotlib

Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet



Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb



Scikit Learn

Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk



Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html



Source: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb


******************

Tensorflow

Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb



Pytorch

Source: https://github.com/bfortuner/pytorch-cheatsheet


******************

Math

Probability

Source: http://www.wzchen.com/s/probability_cheatsheet.pdf


******************

Linear Algebra

Source: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf


******************

Statistics

Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf



Calculus

Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N





About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published