Abstract. This work presents a study on the application of state-of-art language modeling deep learning architectures to the analysis of financial time series.
First, after a short introduction to the topic, the article reviews the main deep computing-based trading methods in the literature: Recurrent Neural Networks (RNNs; primarily the Long Short-Term Memory, LSTM architecture), Convolutional Neural Networks (CNNs) and related work.
Second, the paper describes the implementation of an LSTM network by gently illustrating the variety of concerns it entails, and gives examples of how this model could be able to provide profitable predictions of cryptocurrenciesβ price trends such as Bitcoin.
Challenge Based Innovation, GCiED
-
Alex Carrillo Alza [[email protected]]
-
Advisor: Prof. J. A. RodrΓguez [[email protected]]
January 2021, Universitat Politecnica de Catalunya
- Introduction and Motivation
- Literature
- Method and Model Design
- Methodology and Development
- Dataset and Preprocessing
- Details of Implementation
- Experiments
- Results
- Conclusions and Future Work
References
.
βββ latex
βΒ Β βββ LSTM.png
βΒ Β βββ Makefile
βΒ Β βββ README.txt
βΒ Β βββ cvpr.sty
βΒ Β βββ cvpr_eso.sty
βΒ Β βββ egbib.bib
βΒ Β βββ egbib.log
βΒ Β βββ egpaper_final.aux
βΒ Β βββ egpaper_final.bbl
βΒ Β βββ egpaper_final.blg
βΒ Β βββ egpaper_final.log
βΒ Β βββ egpaper_final.pdf
βΒ Β βββ egpaper_final.tex
βΒ Β βββ eso-pic.sty
βΒ Β βββ ieee_fullname.bst
βββ references
βΒ Β βββ Algorithmic\ Financial\ Trading\ with\ Deep\ CNNs\ -\ Time\ Series\ to\ Image\ Conversion\ Approach.pdf
βΒ Β βββ Comparison\ of\ GARCH,\ Neural\ Network\ and\ Support\ Vector\ Machine\ in\ Financial\ Time\ Series\ Prediction.pdf
βΒ Β βββ DEEP\ NEURAL\ NETWORKS\ FOR\ CRYPTOCURRENCIES\ PRICE\ PREDICTION.pdf
βΒ Β βββ Deep\ LSTM\ with\ Reinforcement\ Learning\ Layer\ for\ Financial\ Trend\ Prediction\ in\ FX\ High\ Frequency\ Trading\ Systems.pdf
βΒ Β βββ Deep\ Learning\ for\ Financial\ Applications\ -\ A\ Survey.pdf
βΒ Β βββ Deep\ Learning\ for\ Stock\ Market\ Prediction\ Using\ Technical\ Indicators\ and\ Financial\ News\ Articles.pdf
βΒ Β βββ LONG\ SHORT-TERM\ MEMORY.pdf
βΒ Β βββ On\ the\ difficulty\ of\ training\ Recurrent\ Neural\ Networks.pdf
βΒ Β βββ Predicting\ the\ direction\ of\ stock\ market\ prices\ using\ random\ forest.pdf
βΒ Β βββ Stock\ Price\ Prediction\ via\ Discovering\ Multi-Frequency\ Trading\ Patterns.pdf
βΒ Β βββ Stock\ market's\ price\ movement\ prediction\ with\ LSTM\ neural\ networks.pdf
βΒ Β βββ THE\ 10\ REASONS\ MOST\ MACHINE\ LEARNING\ FUNDS\ FAIL.pdf
βββ stats
βΒ Β βββ all_stats.py
βΒ Β βββ final_stats.py
βΒ Β βββ new_stats.py
βββ trains
βΒ Β βββ all_trains.sh
βΒ Β βββ final_trains.sh
βΒ Β βββ new_trains.sh
βββ bars.py
βββ commands.txt
βββ loader.py
βββ model.py
βββ PAPER.pdf
βββ plots.py
βββ README.md
βββ save_data.py
βββ stats_plots.py
βββ test.py