Skip to content

akkaze/tf2-yolo3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tf2-yolo3

Quick Start

This code depends on tensorflow-2.x, please install it first.

The easiest way is to use conda,

conda install tensorflow-gpu==2.0.0

This code also requires opencv-python, install it by pip or conda as the following

pip install opencv-python

pip install absl-py

pip install numpy

Training

To train on m2nist dataset, just run

python train.py

To train on your own dataset, just run

python train.py --batch_size 32 --dataset train.txt --val_dataset val.txt --epochs 100 --size 320,320 --learning_rate 1e-3

--size is the input of size in the format (height, width)

--dataset is your own dataset in yolo format, a text file of lines in the following format,

Row format: image_file_path box1 box2 ... boxN; Box format: x_min,y_min,x_max,y_max,class_id (no space).

Here is an example

path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3
path/to/img2.jpg 120,300,250,600,2
...

Use your model

To detect on single image,just run

python detect.py --image path_to_your_image.png --output path_to_your_output.png --size 320,320

Here is two example on m2nist dataset

output0output1

If you have any question, please contact me directly,my email is [email protected]

Releases

No releases published

Packages

No packages published

Languages