Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add constraint handlers for mathopt solvers #309

Merged
merged 1 commit into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 79 additions & 28 deletions discrete_optimization/coloring/solvers/coloring_lp_lns_solvers.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import random
from collections.abc import Iterable
from enum import Enum
from typing import Any
from typing import Any, Union

from discrete_optimization.coloring.coloring_model import (
ColoringProblem,
Expand All @@ -16,19 +16,26 @@
from discrete_optimization.coloring.solvers.coloring_lp_solvers import (
ColoringLP,
ColoringLP_MIP,
ColoringLPMathOpt,
)
from discrete_optimization.coloring.solvers.greedy_coloring import GreedyColoring
from discrete_optimization.generic_tools.do_problem import (
ParamsObjectiveFunction,
build_aggreg_function_and_params_objective,
)
from discrete_optimization.generic_tools.hyperparameters.hyperparameter import (
FloatHyperparameter,
)
from discrete_optimization.generic_tools.lns_mip import (
GurobiConstraintHandler,
InitialSolution,
OrtoolsMathOptConstraintHandler,
PymipConstraintHandler,
)
from discrete_optimization.generic_tools.lns_tools import ConstraintHandler
from discrete_optimization.generic_tools.lp_tools import (
GurobiMilpSolver,
MilpSolver,
MilpSolverName,
PymipMilpSolver,
)
Expand Down Expand Up @@ -82,8 +89,8 @@ def get_starting_solution(self) -> ResultStorage:
return solver.solve()


class ConstraintHandlerFixColorsGrb(GurobiConstraintHandler):
"""Constraint builder used in LNS+LP (using gurobi solver) for coloring problem.
class _BaseConstraintHandlerFixColors(ConstraintHandler):
"""Base class for constraint builder used in LNS+LP for coloring problem.
This constraint handler is pretty basic, it fixes a fraction_to_fix proportion of nodes color.
Expand All @@ -92,29 +99,27 @@ class ConstraintHandlerFixColorsGrb(GurobiConstraintHandler):
fraction_to_fix (float): float between 0 and 1, representing the proportion of nodes to constrain.
"""

hyperparameters = [
FloatHyperparameter("fraction_to_fix", low=0.0, high=1.0, default=0.9),
]

def __init__(self, problem: ColoringProblem, fraction_to_fix: float = 0.9):
self.problem = problem
self.fraction_to_fix = fraction_to_fix

def adding_constraint_from_results_store(
self, solver: GurobiMilpSolver, result_storage: ResultStorage, **kwargs: Any
self,
solver: Union[ColoringLP, ColoringLPMathOpt],
result_storage: ResultStorage,
**kwargs: Any
) -> Iterable[Any]:
if not isinstance(solver, ColoringLP):
raise ValueError("milp_solver must a ColoringLP for this constraint.")
if solver.model is None:
solver.init_model()
if solver.model is None:
raise RuntimeError(
"milp_solver.model must be not None after calling milp_solver.init_model()"
)
subpart_color = set(
random.sample(
solver.nodes_name,
int(self.fraction_to_fix * solver.number_of_nodes),
)
)
dict_color_fixed = {}
dict_color_start = {}
current_solution = result_storage.get_best_solution()
if current_solution is None:
raise ValueError(
Expand All @@ -129,30 +134,76 @@ def adding_constraint_from_results_store(
"result_storage.get_best_solution().colors " "should not be None."
)
max_color = max(current_solution.colors)
solver.set_warm_start(current_solution)
for n in solver.nodes_name:
dict_color_start[n] = current_solution.colors[solver.index_nodes_name[n]]
if n in subpart_color and dict_color_start[n] <= max_color - 1:
dict_color_fixed[n] = dict_color_start[n]
current_node_color = current_solution.colors[solver.index_nodes_name[n]]
if n in subpart_color and current_node_color <= max_color - 1:
dict_color_fixed[n] = current_node_color
colors_var = solver.variable_decision["colors_var"]
lns_constraint = []
lns_constraints = []
for key in colors_var:
n, c = key
if c == dict_color_start[n]:
colors_var[n, c].start = 1
colors_var[n, c].varhintval = 1
else:
colors_var[n, c].start = 0
colors_var[n, c].varhintval = 0
if n in dict_color_fixed:
if c == dict_color_fixed[n]:
lns_constraint.append(
solver.model.addLConstr(colors_var[key] == 1, name=str((n, c)))
lns_constraints.append(
solver.add_linear_constraint(
colors_var[key] == 1, name=str((n, c))
)
)
else:
lns_constraint.append(
solver.model.addLConstr(colors_var[key] == 0, name=str((n, c)))
lns_constraints.append(
solver.add_linear_constraint(
colors_var[key] == 0, name=str((n, c))
)
)
return lns_constraint
return lns_constraints


class ConstraintHandlerFixColorsGrb(
GurobiConstraintHandler, _BaseConstraintHandlerFixColors
):
"""Constraint builder used in LNS+LP (using gurobi solver) for coloring problem.
This constraint handler is pretty basic, it fixes a fraction_to_fix proportion of nodes color.
Attributes:
problem (ColoringProblem): input coloring problem
fraction_to_fix (float): float between 0 and 1, representing the proportion of nodes to constrain.
"""

def adding_constraint_from_results_store(
self, solver: ColoringLP, result_storage: ResultStorage, **kwargs: Any
) -> Iterable[Any]:
constraints = (
_BaseConstraintHandlerFixColors.adding_constraint_from_results_store(
self, solver=solver, result_storage=result_storage, **kwargs
)
)
solver.model.update()
return constraints


class ConstraintHandlerFixColorsMathOpt(
OrtoolsMathOptConstraintHandler, _BaseConstraintHandlerFixColors
):
"""Constraint builder used in LNS+LP (using mathopt solver) for coloring problem.
This constraint handler is pretty basic, it fixes a fraction_to_fix proportion of nodes color.
Attributes:
problem (ColoringProblem): input coloring problem
fraction_to_fix (float): float between 0 and 1, representing the proportion of nodes to constrain.
"""

def adding_constraint_from_results_store(
self, solver: ColoringLPMathOpt, result_storage: ResultStorage, **kwargs: Any
) -> Iterable[Any]:
constraints = (
_BaseConstraintHandlerFixColors.adding_constraint_from_results_store(
self, solver=solver, result_storage=result_storage, **kwargs
)
)
return constraints


class ConstraintHandlerFixColorsPyMip(PymipConstraintHandler):
Expand Down
134 changes: 132 additions & 2 deletions discrete_optimization/facility/solvers/facility_lp_lns_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
import random
from collections.abc import Iterable
from enum import Enum
from typing import Any
from typing import Any, Union

import mip

Expand All @@ -15,6 +15,8 @@
FacilitySolution,
)
from discrete_optimization.facility.solvers.facility_lp_solver import (
LP_Facility_Solver,
LP_Facility_Solver_MathOpt,
LP_Facility_Solver_PyMip,
MilpSolverName,
)
Expand All @@ -30,10 +32,16 @@
EnumHyperparameter,
)
from discrete_optimization.generic_tools.lns_mip import (
GurobiConstraintHandler,
InitialSolution,
OrtoolsMathOptConstraintHandler,
PymipConstraintHandler,
)
from discrete_optimization.generic_tools.lp_tools import PymipMilpSolver
from discrete_optimization.generic_tools.lns_tools import ConstraintHandler
from discrete_optimization.generic_tools.lp_tools import (
GurobiMilpSolver,
PymipMilpSolver,
)

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -177,3 +185,125 @@ def adding_constraint_from_results_store(
solver.model.solver.update()
solver.model.start = start
return lns_constraint


class _BaseConstraintHandlerFacility(ConstraintHandler):
"""Constraint builder used in LNS+LP for coloring problem.
This constraint handler is pretty basic, it fixes a fraction_to_fix proportion of allocation of customer to
facility.
Attributes:
problem (ColoringProblem): input coloring problem
fraction_to_fix (float): float between 0 and 1, representing the proportion of nodes to constrain.
"""

def __init__(
self,
problem: FacilityProblem,
fraction_to_fix: float = 0.9,
):
self.problem = problem
self.fraction_to_fix = fraction_to_fix

def adding_constraint_from_results_store(
self,
solver: Union[LP_Facility_Solver, LP_Facility_Solver_MathOpt],
result_storage: ResultStorage,
**kwargs: Any,
) -> Iterable[Any]:
subpart_customer = set(
random.sample(
range(self.problem.customer_count),
int(self.fraction_to_fix * self.problem.customer_count),
)
)
current_solution = result_storage.get_best_solution()
if current_solution is None:
raise ValueError(
"result_storage.get_best_solution() " "should not be None."
)
if not isinstance(current_solution, FacilitySolution):
raise ValueError(
"result_storage.get_best_solution() " "should be a FacilitySolution."
)
solver.set_warm_start(current_solution)

dict_f_fixed = {}
for c in range(self.problem.customer_count):
if c in subpart_customer:
dict_f_fixed[c] = current_solution.facility_for_customers[c]
x_var = solver.variable_decision["x"]
lns_constraint = []
for key in x_var:
f, c = key
if c in dict_f_fixed:
if f == dict_f_fixed[c]:
if not isinstance(x_var[f, c], int):
lns_constraint.append(
solver.add_linear_constraint(
x_var[key] == 1, name=str((f, c))
)
)
else:
if not isinstance(x_var[f, c], int):
lns_constraint.append(
solver.add_linear_constraint(
x_var[key] == 0, name=str((f, c))
)
)
return lns_constraint


class ConstraintHandlerFacilityGurobi(
GurobiConstraintHandler, _BaseConstraintHandlerFacility
):
"""Constraint builder used in LNS+LP for coloring problem with gurobi solver.
This constraint handler is pretty basic, it fixes a fraction_to_fix proportion of allocation of customer to
facility.
Attributes:
problem (ColoringProblem): input coloring problem
fraction_to_fix (float): float between 0 and 1, representing the proportion of nodes to constrain.
"""

def adding_constraint_from_results_store(
self, solver: LP_Facility_Solver, result_storage: ResultStorage, **kwargs: Any
) -> Iterable[Any]:
constraints = (
_BaseConstraintHandlerFacility.adding_constraint_from_results_store(
self, solver=solver, result_storage=result_storage, **kwargs
)
)
solver.model.update()
return constraints


class ConstraintHandlerFacilityMathOpt(
OrtoolsMathOptConstraintHandler, _BaseConstraintHandlerFacility
):
"""Constraint builder used in LNS+LP for coloring problem with mathopt solver.
This constraint handler is pretty basic, it fixes a fraction_to_fix proportion of allocation of customer to
facility.
Attributes:
problem (ColoringProblem): input coloring problem
fraction_to_fix (float): float between 0 and 1, representing the proportion of nodes to constrain.
"""

def adding_constraint_from_results_store(
self,
solver: LP_Facility_Solver_MathOpt,
result_storage: ResultStorage,
**kwargs: Any,
) -> Iterable[Any]:
constraints = (
_BaseConstraintHandlerFacility.adding_constraint_from_results_store(
self, solver=solver, result_storage=result_storage, **kwargs
)
)
return constraints
12 changes: 12 additions & 0 deletions discrete_optimization/generic_tools/lns_mip.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
GurobiMilpSolver,
MilpSolver,
MilpSolverName,
OrtoolsMathOptMilpSolver,
ParametersMilp,
PymipMilpSolver,
)
Expand All @@ -42,6 +43,17 @@ def remove_constraints_from_previous_iteration(
solver.model.update()


class OrtoolsMathOptConstraintHandler(ConstraintHandler):
def remove_constraints_from_previous_iteration(
self,
solver: OrtoolsMathOptMilpSolver,
previous_constraints: Iterable[Any],
**kwargs: Any,
) -> None:
for cstr in previous_constraints:
solver.model.delete_linear_constraint(cstr)


class PymipConstraintHandler(ConstraintHandler):
def remove_constraints_from_previous_iteration(
self,
Expand Down
1 change: 1 addition & 0 deletions discrete_optimization/generic_tools/lp_tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -949,6 +949,7 @@ def set_warm_start_from_values(
) -> None:
for var, val in variable_values.items():
var.Start = val
var.VarHintVal = val


class GurobiCallback:
Expand Down
Loading