Skip to content

Commit

Permalink
Normal form of FreeGroup (#1099)
Browse files Browse the repository at this point in the history
* nomral form of freegroup and Group solver tactic

* some cleanup

* group solver specialised to paths (aware of double-path-composition)

* fixed name conflict

* start with boilerplate

* functor notation

* free cats

* write down a candidate def for free wild cat

* notes

* wip on grupoidSolver

* removed solvers

* removed solvers

* added brief description of module

* tweaking comments

---------

Co-authored-by: Felix Cherubini <[email protected]>
  • Loading branch information
marcinjangrzybowski and felixwellen authored Apr 12, 2024
1 parent c26160b commit f9c7655
Show file tree
Hide file tree
Showing 11 changed files with 1,081 additions and 16 deletions.
507 changes: 507 additions & 0 deletions Cubical/Algebra/Group/Free.agda

Large diffs are not rendered by default.

28 changes: 26 additions & 2 deletions Cubical/Data/List/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@ module Cubical.Data.List.Base where

open import Agda.Builtin.List public
open import Cubical.Core.Everything
open import Cubical.Data.Maybe.Base as Maybe
open import Cubical.Data.Nat.Base
open import Cubical.Data.Maybe.Base as Maybe hiding (rec ; elim)
open import Cubical.Data.Nat.Base hiding (elim)

module _ {ℓ} {A : Type ℓ} where

Expand Down Expand Up @@ -50,3 +50,27 @@ module _ {ℓ} {A : Type ℓ} where
foldl : {ℓ'} {B : Type ℓ'} (B A B) B List A B
foldl f b [] = b
foldl f b (x ∷ xs) = foldl f (f b x) xs

drop : List A List A
drop zero xs = xs
drop (suc n) [] = []
drop (suc n) (x ∷ xs) = drop n xs

take : List A List A
take zero xs = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n xs

elim : {ℓ'} {B : List A Type ℓ'}
B []
( {a l} B l B (a ∷ l))
l B l
elim b _ [] = b
elim {B = B} b[] b (a ∷ l) = b (elim {B = B} b[] b l )

rec : {ℓ'} {B : Type ℓ'}
B
(A B B)
List A B
rec b _ [] = b
rec b f (x ∷ xs) = f x (rec b f xs)
193 changes: 181 additions & 12 deletions Cubical/Data/List/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,16 @@ open import Cubical.Core.Everything
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Data.Sum as ⊎ hiding (map)
open import Cubical.Data.Unit
open import Cubical.Relation.Nullary

open import Cubical.Data.List.Base
open import Cubical.Data.List.Base as List

module _ {ℓ} {A : Type ℓ} where

Expand Down Expand Up @@ -117,8 +120,11 @@ isOfHLevelList n ofLevel xs ys =

private
variable
: Level
ℓ' : Level
A : Type ℓ
B : Type ℓ'
x y : A
xs ys : List A

caseList : {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n c : B) List A B
caseList n _ [] = n
Expand All @@ -132,23 +138,32 @@ private
safe-tail [] = []
safe-tail (_ ∷ xs) = xs

cons-inj₁ : {x y : A} {xs ys} x ∷ xs ≡ y ∷ ys x ≡ y
cons-inj₁ : x ∷ xs ≡ y ∷ ys x ≡ y
cons-inj₁ {x = x} p = cong (safe-head x) p

cons-inj₂ : {x y : A} {xs ys} x ∷ xs ≡ y ∷ ys xs ≡ ys
cons-inj₂ : x ∷ xs ≡ y ∷ ys xs ≡ ys
cons-inj₂ = cong safe-tail

¬cons≡nil : {x : A} {xs} ¬ (x ∷ xs ≡ [])
¬cons≡nil {A = A} p = lower (subst (caseList (Lift ⊥) (List A)) p [])
snoc-inj₂ : xs ∷ʳ x ≡ ys ∷ʳ y x ≡ y
snoc-inj₂ {xs = xs} {ys = ys} p =
cons-inj₁ ((sym (rev-++ xs _)) ∙∙ cong rev p ∙∙ (rev-++ ys _))

¬nil≡cons : {x : A} {xs} ¬ ([] ≡ x ∷ xs)
¬nil≡cons {A = A} p = lower (subst (caseList (List A) (Lift ⊥)) p [])
snoc-inj₁ : xs ∷ʳ x ≡ ys ∷ʳ y xs ≡ ys
snoc-inj₁ {xs = xs} {ys = ys} p =
sym (rev-rev _) ∙∙ cong rev (cons-inj₂ ((sym (rev-++ xs _)) ∙∙ cong rev p ∙∙ (rev-++ ys _)))
∙∙ rev-rev _

¬snoc≡nil : {x : A} {xs} ¬ (xs ∷ʳ x ≡ [])
¬cons≡nil : ¬ (x ∷ xs ≡ [])
¬cons≡nil {_} {A} p = lower (subst (caseList (Lift ⊥) (List A)) p [])

¬nil≡cons : ¬ ([] ≡ x ∷ xs)
¬nil≡cons {_} {A} p = lower (subst (caseList (List A) (Lift ⊥)) p [])

¬snoc≡nil : ¬ (xs ∷ʳ x ≡ [])
¬snoc≡nil {xs = []} contra = ¬cons≡nil contra
¬snoc≡nil {xs = x ∷ xs} contra = ¬cons≡nil contra

¬nil≡snoc : {x : A} {xs} ¬ ([] ≡ xs ∷ʳ x)
¬nil≡snoc : ¬ ([] ≡ xs ∷ʳ x)
¬nil≡snoc contra = ¬snoc≡nil (sym contra)

cons≡rev-snoc : (x : A) (xs : List A) x ∷ rev xs ≡ rev (xs ∷ʳ x)
Expand All @@ -158,7 +173,7 @@ cons≡rev-snoc x (y ∷ ys) = λ i → cons≡rev-snoc x ys i ++ y ∷ []
isContr[]≡[] : isContr (Path (List A) [] [])
isContr[]≡[] = refl , ListPath.decodeEncode [] []

isPropXs≡[] : {xs : List A} isProp (xs ≡ [])
isPropXs≡[] : isProp (xs ≡ [])
isPropXs≡[] {xs = []} = isOfHLevelSuc 0 isContr[]≡[]
isPropXs≡[] {xs = x ∷ xs} = λ p _ ⊥.rec (¬cons≡nil p)

Expand All @@ -175,7 +190,161 @@ foldrCons : (xs : List A) → foldr _∷_ [] xs ≡ xs
foldrCons [] = refl
foldrCons (x ∷ xs) = cong (x ∷_) (foldrCons xs)

length-map : {ℓA ℓB} {A : Type ℓA} {B : Type ℓB} (f : A B) (as : List A)
length-map : (f : A B) (as : List A)
length (map f as) ≡ length as
length-map f [] = refl
length-map f (a ∷ as) = cong suc (length-map f as)

map++ : (f : A B) (as bs : List A)
map f as ++ map f bs ≡ map f (as ++ bs)
map++ f [] bs = refl
map++ f (x ∷ as) bs = cong (f x ∷_) (map++ f as bs)

rev-map-comm : (f : A B) (as : List A)
map f (rev as) ≡ rev (map f as)
rev-map-comm f [] = refl
rev-map-comm f (x ∷ as) =
sym (map++ f (rev as) _) ∙ cong (_++ [ f x ]) (rev-map-comm f as)

length++ : (xs ys : List A) length (xs ++ ys) ≡ length xs + length ys
length++ [] ys = refl
length++ (x ∷ xs) ys = cong suc (length++ xs ys)

drop++ : (xs ys : List A) k
drop (length xs + k) (xs ++ ys) ≡ drop k ys
drop++ [] ys k = refl
drop++ (x ∷ xs) ys k = drop++ xs ys k

dropLength++ : (xs : List A) drop (length xs) (xs ++ ys) ≡ ys
dropLength++ {ys = ys} xs =
cong (flip drop (xs ++ ys)) (sym (+-zero (length xs))) ∙ drop++ xs ys 0


dropLength : (xs : List A) drop (length xs) xs ≡ []
dropLength xs =
cong (drop (length xs)) (sym (++-unit-r xs))
∙ dropLength++ xs


take++ : (xs ys : List A) k take (length xs + k) (xs ++ ys) ≡ xs ++ take k ys
take++ [] ys k = refl
take++ (x ∷ xs) ys k = cong (_ ∷_) (take++ _ _ k)


takeLength++ : ys take (length xs) (xs ++ ys) ≡ xs
takeLength++ {xs = xs} ys =
cong (flip take (xs ++ ys)) (sym (+-zero (length xs)))
∙∙ take++ xs ys 0
∙∙ ++-unit-r xs

takeLength : take (length xs) xs ≡ xs
takeLength = cong (take _) (sym (++-unit-r _)) ∙ takeLength++ []

map-∘ : {ℓA ℓB ℓC} {A : Type ℓA} {B : Type ℓB} {C : Type ℓC}
(g : B C) (f : A B) (as : List A)
map g (map f as) ≡ map (λ x g (f x)) as
map-∘ g f [] = refl
map-∘ g f (x ∷ as) = cong (_ ∷_) (map-∘ g f as)

map-id : (as : List A) map (λ x x) as ≡ as
map-id [] = refl
map-id (x ∷ as) = cong (_ ∷_) (map-id as)

length≡0→≡[] : (xs : List A) length xs ≡ 0 xs ≡ []
length≡0→≡[] [] x = refl
length≡0→≡[] (x₁ ∷ xs) x = ⊥.rec (snotz x)

init : List A List A
init [] = []
init (x ∷ []) = []
init (x ∷ xs@(_ ∷ _)) = x ∷ init xs

tail : List A List A
tail [] = []
tail (x ∷ xs) = xs

init-red-lem : (x : A) xs ¬ (xs ≡ []) (x ∷ init xs) ≡ (init (x ∷ xs))
init-red-lem x [] x₁ = ⊥.rec (x₁ refl)
init-red-lem x (x₂ ∷ xs) x₁ = refl

init∷ʳ : init (xs ∷ʳ x) ≡ xs
init∷ʳ {xs = []} = refl
init∷ʳ {xs = _ ∷ []} = refl
init∷ʳ {xs = _ ∷ _ ∷ _} = cong (_ ∷_) init∷ʳ

tail∷ʳ : tail (xs ∷ʳ y) ∷ʳ x ≡ tail (xs ∷ʳ y ∷ʳ x)
tail∷ʳ {xs = []} = refl
tail∷ʳ {xs = x ∷ xs} = refl

init-rev-tail : rev (init xs) ≡ tail (rev xs)
init-rev-tail {xs = []} = refl
init-rev-tail {xs = x ∷ []} = refl
init-rev-tail {xs = x ∷ y ∷ xs} =
cong (_∷ʳ x) (init-rev-tail {xs = y ∷ xs})
∙ tail∷ʳ {xs = rev xs}

init++ : xs xs ++ init (x ∷ ys) ≡ init (xs ++ x ∷ ys)
init++ [] = refl
init++ (_ ∷ []) = refl
init++ (_ ∷ _ ∷ _) = cong (_ ∷_) (init++ (_ ∷ _))

Split++ : (xs ys xs' ys' zs : List A) Type _
Split++ xs ys xs' ys' zs = ((xs ++ zs ≡ xs') × (ys ≡ zs ++ ys'))

split++ : (xs' ys' xs ys : List A) xs' ++ ys' ≡ xs ++ ys
Σ _ λ zs
((Split++ xs' ys' xs ys zs)
⊎ (Split++ xs ys xs' ys' zs))
split++ [] ys' xs ys x = xs , inl (refl , x)
split++ xs'@(_ ∷ _) ys' [] ys x = xs' , inr (refl , sym x)
split++ (x₁ ∷ xs') ys' (x₂ ∷ xs) ys x =
let (zs , q) = split++ xs' ys' xs ys (cons-inj₂ x)
p = cons-inj₁ x
in zs , ⊎.map (map-fst (λ q i p i ∷ q i))
(map-fst (λ q i p (~ i) ∷ q i)) q

rot : List A List A
rot [] = []
rot (x ∷ xs) = xs ∷ʳ x

take[] : n take {A = A} n [] ≡ []
take[] zero = refl
take[] (suc n) = refl

drop[] : n drop {A = A} n [] ≡ []
drop[] zero = refl
drop[] (suc n) = refl

lookupAlways : A List A A
lookupAlways a [] _ = a
lookupAlways _ (x ∷ _) zero = x
lookupAlways a (x ∷ xs) (suc k) = lookupAlways a xs k

module List₂ where
open import Cubical.HITs.SetTruncation renaming
(rec to rec₂ ; map to map₂ ; elim to elim₂ )

∥List∥₂→List∥∥₂ : ∥ List A ∥₂ List ∥ A ∥₂
∥List∥₂→List∥∥₂ = rec₂ (isOfHLevelList 0 squash₂) (map ∣_∣₂)

List∥∥₂→∥List∥₂ : List ∥ A ∥₂ ∥ List A ∥₂
List∥∥₂→∥List∥₂ [] = ∣ [] ∣₂
List∥∥₂→∥List∥₂ (x ∷ xs) =
rec2 squash₂ (λ x xs ∣ x ∷ xs ∣₂) x (List∥∥₂→∥List∥₂ xs)

Iso∥List∥₂List∥∥₂ : Iso (List ∥ A ∥₂) ∥ List A ∥₂
Iso.fun Iso∥List∥₂List∥∥₂ = List∥∥₂→∥List∥₂
Iso.inv Iso∥List∥₂List∥∥₂ = ∥List∥₂→List∥∥₂
Iso.rightInv Iso∥List∥₂List∥∥₂ =
elim₂ (isProp→isSet ∘ λ _ squash₂ _ _)
(List.elim refl (cong (rec2 squash₂ (λ x₁ xs ∣ x₁ ∷ xs ∣₂) ∣ _ ∣₂)))
Iso.leftInv Iso∥List∥₂List∥∥₂ = List.elim refl ((lem _ _ ∙_) ∘S cong (_ ∷_))
where
lem = elim2 {C = λ a l' ∥List∥₂→List∥∥₂
(rec2 squash₂ (λ x₁ xs ∣ x₁ ∷ xs ∣₂) a l')
≡ a ∷ ∥List∥₂→List∥∥₂ l'}
(λ _ _ isProp→isSet (isOfHLevelList 0 squash₂ _ _))
λ _ _ refl

List-comm-∥∥₂ : {ℓ} List {ℓ} ∘ ∥_∥₂ ≡ ∥_∥₂ ∘ List
List-comm-∥∥₂ = funExt λ A isoToPath (Iso∥List∥₂List∥∥₂ {A = A})
6 changes: 6 additions & 0 deletions Cubical/Data/Nat/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -173,6 +173,12 @@ m+n≡0→m≡0×n≡0 : m + n ≡ 0 → (m ≡ 0) × (n ≡ 0)
m+n≡0→m≡0×n≡0 {zero} = refl ,_
m+n≡0→m≡0×n≡0 {suc m} p = ⊥.rec (snotz p)

m+n≡1→m≡0×n≡1⊎m≡1n≡0 : m + n ≡ 1 ((m ≡ 0) × (n ≡ 1)) ⊎ ((m ≡ 1) × (n ≡ 0))
m+n≡1→m≡0×n≡1⊎m≡1n≡0 {zero} x = inl (refl , x)
m+n≡1→m≡0×n≡1⊎m≡1n≡0 {suc m} {n} x =
let (m≡0 , n≡0) = m+n≡0→m≡0×n≡0 (injSuc x)
in inr (cong suc m≡0 , n≡0 )

-- Arithmetic facts about ·

0≡m·0 : m 0 ≡ m · 0
Expand Down
4 changes: 4 additions & 0 deletions Cubical/Data/Sigma/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -378,6 +378,10 @@ snd (ΣPathPProp {B = B} {u = u} {v = v} pB p i) = lem i
lem : PathP (λ i B i (p i)) (snd u) (snd v)
lem = toPathP (pB _ _ _)

discreteΣProp : Discrete A ((x : A) isProp (B x)) Discrete (Σ A B)
discreteΣProp _≟_ isPropA _ _ =
EquivPresDec (Σ≡PropEquiv isPropA) (_ ≟ _)

≃-× : {ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} A ≃ C B ≃ D A × B ≃ C × D
≃-× eq1 eq2 =
map-× (fst eq1) (fst eq2)
Expand Down
8 changes: 6 additions & 2 deletions Cubical/Foundations/Function.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ open import Cubical.Foundations.Prelude
private
variable
ℓ ℓ' ℓ'' : Level
A : Type ℓ
A A' A'' : Type ℓ
B : A Type ℓ
C : (a : A) B a Type ℓ
D : (a : A) (b : B a) C a b Type ℓ
Expand All @@ -26,12 +26,16 @@ _$_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} → ((a : A) → B a)
f $ a = f a
{-# INLINE _$_ #-}

infixr 9 _∘_
infixr 9 _∘_ _∘S_

_∘_ : (g : {a : A} (b : B a) C a b) (f : (a : A) B a) (a : A) C a (f a)
g ∘ f = λ x g (f x)
{-# INLINE _∘_ #-}

_∘S_ : (A' A'') (A A') A A''
g ∘S f = λ x g (f x)
{-# INLINE _∘S_ #-}

∘-assoc : (h : {a : A} {b : B a} (c : C a b) D a b c)
(g : {a : A} (b : B a) C a b)
(f : (a : A) B a)
Expand Down
18 changes: 18 additions & 0 deletions Cubical/Foundations/Univalence.agda
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,13 @@ module _ {A B : Type ℓ} (e : A ≃ B) {x : A} {y : B} where
unquoteDef ua-ungluePath-Equiv =
defStrictEquiv ua-ungluePath-Equiv ua-ungluePath ua-gluePath

ua-ungluePathExt : {A B : Type ℓ} (e : A ≃ B) PathP (λ i ua e i B) (fst e) (idfun B)
ua-ungluePathExt e i = ua-unglue e i

ua-gluePathExt : {A B : Type ℓ} (e : A ≃ B) PathP (λ i A ua e i) (idfun _) (fst e)
ua-gluePathExt e i x =
ua-glue e i (λ { (i = i0) x }) (inS (fst e x))

-- ua-unglue and ua-glue are also definitional inverses, in a way
-- strengthening the types of ua-unglue and ua-glue gives a nicer formulation of this, see below

Expand Down Expand Up @@ -137,6 +144,14 @@ unglueEquiv : ∀ (A : Type ℓ) (φ : I)
(Glue A f) ≃ A
unglueEquiv A φ f = ( unglue φ , unglueIsEquiv A φ f )

ua-unglueEquiv : {A B : Type ℓ} (e : A ≃ B)
PathP (λ i ua e i ≃ B)
e
(idEquiv _)
fst (ua-unglueEquiv e i) = ua-unglue e i
snd (ua-unglueEquiv e i) =
isProp→PathP (λ i isPropIsEquiv (ua-unglue e i))
(snd e) (idIsEquiv _) i

-- The following is a formulation of univalence proposed by Martín Escardó:
-- https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ
Expand Down Expand Up @@ -194,6 +209,9 @@ pathToEquivRefl {A = A} = equivEq (λ i x → transp (λ _ → A) i x)
uaβ : {A B : Type ℓ} (e : A ≃ B) (x : A) transport (ua e) x ≡ equivFun e x
uaβ e x = transportRefl (equivFun e x)

~uaβ : {A B : Type ℓ} (e : A ≃ B) (x : B) transport (sym (ua e)) x ≡ invEq e x
~uaβ e x = cong (invEq e) (transportRefl x)

uaη : {A B : Type ℓ} (P : A ≡ B) ua (pathToEquiv P) ≡ P
uaη {A = A} {B = B} P i j = Glue B {φ = φ} sides where
-- Adapted from a proof by @dolio, cf. commit e42a6fa1
Expand Down
Loading

0 comments on commit f9c7655

Please sign in to comment.