Skip to content

Commit

Permalink
update tinyusb to commit 55951b71aea46c09f27afe1640454fe43c983eec
Browse files Browse the repository at this point in the history
  • Loading branch information
hathach committed Sep 4, 2024
1 parent 446e0af commit f64cf2e
Show file tree
Hide file tree
Showing 14 changed files with 661 additions and 376 deletions.
563 changes: 356 additions & 207 deletions src/class/audio/audio_device.c

Large diffs are not rendered by default.

100 changes: 59 additions & 41 deletions src/class/audio/audio_device.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
*
* Copyright (c) 2020 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Reinhard Panhuber
* Copyright (c) 2023 HiFiPhile
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
Expand Down Expand Up @@ -192,6 +193,7 @@
#endif

// Enable/disable conversion from 16.16 to 10.14 format on full-speed devices. See tud_audio_n_fb_set().
// Can be override by tud_audio_feedback_format_correction_cb()
#ifndef CFG_TUD_AUDIO_ENABLE_FEEDBACK_FORMAT_CORRECTION
#define CFG_TUD_AUDIO_ENABLE_FEEDBACK_FORMAT_CORRECTION 0 // 0 or 1
#endif
Expand Down Expand Up @@ -242,7 +244,8 @@
// Enable encoding/decodings - for these to work, support FIFOs need to be setup in appropriate numbers and size
// The actual coding parameters of active AS alternate interface is parsed from the descriptors

// The item size of the FIFO is always fixed to one i.e. bytes! Furthermore, the actively used FIFO depth is reconfigured such that the depth is a multiple of the current sample size in order to avoid samples to get split up in case of a wrap in the FIFO ring buffer (depth = (max_depth / sampe_sz) * sampe_sz)!
// The item size of the FIFO is always fixed to one i.e. bytes! Furthermore, the actively used FIFO depth is reconfigured such that the depth is a multiple
// of the current sample size in order to avoid samples to get split up in case of a wrap in the FIFO ring buffer (depth = (max_depth / sample_sz) * sample_sz)!
// This is important to remind in case you use DMAs! If the sample sizes changes, the DMA MUST BE RECONFIGURED just like the FIFOs for a different depth!!!

// For PCM encoding/decoding
Expand Down Expand Up @@ -446,63 +449,80 @@ static inline bool tud_audio_int_write (const audio_interru
bool tud_audio_buffer_and_schedule_control_xfer(uint8_t rhport, tusb_control_request_t const * p_request, void* data, uint16_t len);

//--------------------------------------------------------------------+
// Application Callback API (weak is optional)
// Application Callback API
//--------------------------------------------------------------------+

#if CFG_TUD_AUDIO_ENABLE_EP_IN
TU_ATTR_WEAK bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t func_id, uint8_t ep_in, uint8_t cur_alt_setting);
TU_ATTR_WEAK bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t func_id, uint8_t ep_in, uint8_t cur_alt_setting);
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t func_id, uint8_t ep_in, uint8_t cur_alt_setting);
bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t func_id, uint8_t ep_in, uint8_t cur_alt_setting);
#endif

#if CFG_TUD_AUDIO_ENABLE_EP_OUT
TU_ATTR_WEAK bool tud_audio_rx_done_pre_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting);
TU_ATTR_WEAK bool tud_audio_rx_done_post_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting);
bool tud_audio_rx_done_pre_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting);
bool tud_audio_rx_done_post_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting);
#endif

#if CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP
TU_ATTR_WEAK void tud_audio_fb_done_cb(uint8_t func_id);
void tud_audio_fb_done_cb(uint8_t func_id);


// determined by the user itself and set by use of tud_audio_n_fb_set(). The feedback value may be determined e.g. from some fill status of some FIFO buffer. Advantage: No ISR interrupt is enabled, hence the CPU need not to handle an ISR every 1ms or 125us and thus less CPU load, disadvantage: typically a larger FIFO is needed to compensate for jitter (e.g. 8 frames), i.e. a larger delay is introduced.

// Feedback value is calculated within the audio driver by use of SOF interrupt. The driver needs information about the master clock f_m from which the audio sample frequency f_s is derived, f_s itself, and the cycle count of f_m at time of the SOF interrupt (e.g. by use of a hardware counter) - see tud_audio_set_fb_params(). Advantage: Reduced jitter in the feedback value computation, hence, the receive FIFO can be smaller (e.g. 2 frames) and thus a smaller delay is possible, disadvantage: higher CPU load due to SOF ISR handling every frame i.e. 1ms or 125us. This option is a great starting point to try the SOF ISR option but depending on your hardware setup (performance of the CPU) it might not work. If so, figure out why and use the next option. (The most critical point is the reading of the cycle counter value of f_m. It is read from within the SOF ISR - see: audiod_sof() -, hence, the ISR must has a high priority such that no software dependent "random" delay i.e. jitter is introduced).
// Note about feedback calculation
//
// Option 1 - AUDIO_FEEDBACK_METHOD_FIFO_COUNT
// Feedback value is calculated within the audio driver by regulating the FIFO level to half fill.
// Advantage: No ISR interrupt is enabled, hence the CPU need not to handle an ISR every 1ms or 125us and thus less CPU load, well tested
// (Windows, Linux, OSX) with a reliable result so far.
// Disadvantage: A FIFO of minimal 4 frames is needed to compensate for jitter, an average delay of 2 frames is introduced.
//
// Option 2 - AUDIO_FEEDBACK_METHOD_FREQUENCY_FIXED / AUDIO_FEEDBACK_METHOD_FREQUENCY_FLOAT
// Feedback value is calculated within the audio driver by use of SOF interrupt. The driver needs information about the master clock f_m from
// which the audio sample frequency f_s is derived, f_s itself, and the cycle count of f_m at time of the SOF interrupt (e.g. by use of a hardware counter).
// See tud_audio_set_fb_params() and tud_audio_feedback_update()
// Advantage: Reduced jitter in the feedback value computation, hence, the receive FIFO can be smaller and thus a smaller delay is possible.
// Disadvantage: higher CPU load due to SOF ISR handling every frame i.e. 1ms or 125us. (The most critical point is the reading of the cycle counter value of f_m.
// It is read from within the SOF ISR - see: audiod_sof() -, hence, the ISR must has a high priority such that no software dependent "random" delay i.e. jitter is introduced).
// Long-term drift could occur since error is accumulated.
//
// Option 3 - manual
// Determined by the user itself and set by use of tud_audio_n_fb_set(). The feedback value may be determined e.g. from some fill status of some FIFO buffer.
// Advantage: No ISR interrupt is enabled, hence the CPU need not to handle an ISR every 1ms or 125us and thus less CPU load.
// Disadvantage: typically a larger FIFO is needed to compensate for jitter (e.g. 6 frames), i.e. a larger delay is introduced.

// Feedback value is determined by the user by use of SOF interrupt. The user may use tud_audio_sof_isr() which is called every SOF (of course only invoked when an alternate interface other than zero was set). The number of frames used to determine the feedback value for the currently active alternate setting can be get by tud_audio_get_fb_n_frames(). The feedback value must be set by use of tud_audio_n_fb_set().

// This function is used to provide data rate feedback from an asynchronous sink. Feedback value will be sent at FB endpoint interval till it's changed.
//
// The feedback format is specified to be 16.16 for HS and 10.14 for FS devices (see Universal Serial Bus Specification Revision 2.0 5.12.4.2). By default,
// the choice of format is left to the caller and feedback argument is sent as-is. If CFG_TUD_AUDIO_ENABLE_FEEDBACK_FORMAT_CORRECTION is set, then tinyusb
// expects 16.16 format and handles the conversion to 10.14 on FS.
// the choice of format is left to the caller and feedback argument is sent as-is. If CFG_TUD_AUDIO_ENABLE_FEEDBACK_FORMAT_CORRECTION is set or tud_audio_feedback_format_correction_cb()
// return true, then tinyusb expects 16.16 format and handles the conversion to 10.14 on FS.
//
// Note that due to a bug in its USB Audio 2.0 driver, Windows currently requires 16.16 format for _all_ USB 2.0 devices. On Linux and it seems the
// driver can work with either format.
//
// Note that due to a bug in its USB Audio 2.0 driver, Windows currently requires 16.16 format for _all_ USB 2.0 devices. On Linux and macOS it seems the
// driver can work with either format. So a good compromise is to keep format correction disabled and stick to 16.16 format.

// Feedback value can be determined from within the SOF ISR of the audio driver. This should reduce jitter. If the feature is used, the user can not set the feedback value.

//
// Determine feedback value - The feedback method is described in 5.12.4.2 of the USB 2.0 spec
// Boiled down, the feedback value Ff = n_samples / (micro)frame.
// Since an accuracy of less than 1 Sample / second is desired, at least n_frames = ceil(2^K * f_s / f_m) frames need to be measured, where K = 10 for full speed and K = 13 for high speed, f_s is the sampling frequency e.g. 48 kHz and f_m is the cpu clock frequency e.g. 100 MHz (or any other master clock whose clock count is available and locked to f_s)
// Since an accuracy of less than 1 Sample / second is desired, at least n_frames = ceil(2^K * f_s / f_m) frames need to be measured, where K = 10 for full speed and K = 13
// for high speed, f_s is the sampling frequency e.g. 48 kHz and f_m is the cpu clock frequency e.g. 100 MHz (or any other master clock whose clock count is available and locked to f_s)
// The update interval in the (4.10.2.1) Feedback Endpoint Descriptor must be less or equal to 2^(K - P), where P = min( ceil(log2(f_m / f_s)), K)
// feedback = n_cycles / n_frames * f_s / f_m in 16.16 format, where n_cycles are the number of main clock cycles within fb_n_frames

bool tud_audio_n_fb_set(uint8_t func_id, uint32_t feedback);
static inline bool tud_audio_fb_set(uint32_t feedback);

// Update feedback value with passed cycles since last time this update function is called.
// Update feedback value with passed MCLK cycles since last time this update function is called.
// Typically called within tud_audio_sof_isr(). Required tud_audio_feedback_params_cb() is implemented
// This function will also call tud_audio_feedback_set()
// return feedback value in 16.16 for reference (0 for error)
// Example :
// binterval=3 (4ms); FS = 48kHz; MCLK = 12.288MHz
// In 4 SOF MCLK counted 49152 cycles
uint32_t tud_audio_feedback_update(uint8_t func_id, uint32_t cycles);

enum {
AUDIO_FEEDBACK_METHOD_DISABLED,
AUDIO_FEEDBACK_METHOD_FREQUENCY_FIXED,
AUDIO_FEEDBACK_METHOD_FREQUENCY_FLOAT,
AUDIO_FEEDBACK_METHOD_FREQUENCY_POWER_OF_2,

// impelemnt later
// AUDIO_FEEDBACK_METHOD_FIFO_COUNT
AUDIO_FEEDBACK_METHOD_FREQUENCY_POWER_OF_2, // For driver internal use only
AUDIO_FEEDBACK_METHOD_FIFO_COUNT
};

typedef struct {
Expand All @@ -514,52 +534,50 @@ typedef struct {
uint32_t mclk_freq; // Main clock frequency in Hz i.e. master clock to which sample clock is based on
}frequency;

#if 0 // implement later
struct {
uint32_t threshold_bytes; // minimum number of bytes received to be considered as filled/ready
}fifo_count;
#endif
};
}audio_feedback_params_t;

// Invoked when needed to set feedback parameters
TU_ATTR_WEAK void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t* feedback_param);
void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t* feedback_param);

// Callback in ISR context, invoked periodically according to feedback endpoint bInterval.
// Could be used to compute and update feedback value, should be placed in RAM if possible
// frame_number : current SOF count
// interval_shift: number of bit shift i.e log2(interval) from Feedback endpoint descriptor
TU_ATTR_WEAK TU_ATTR_FAST_FUNC void tud_audio_feedback_interval_isr(uint8_t func_id, uint32_t frame_number, uint8_t interval_shift);
TU_ATTR_FAST_FUNC void tud_audio_feedback_interval_isr(uint8_t func_id, uint32_t frame_number, uint8_t interval_shift);

// (Full-Speed only) Callback to set feedback format correction is applied or not,
// default to CFG_TUD_AUDIO_ENABLE_FEEDBACK_FORMAT_CORRECTION if not implemented.
bool tud_audio_feedback_format_correction_cb(uint8_t func_id);
#endif // CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP

#if CFG_TUD_AUDIO_ENABLE_INTERRUPT_EP
TU_ATTR_WEAK void tud_audio_int_done_cb(uint8_t rhport);
void tud_audio_int_done_cb(uint8_t rhport);
#endif

// Invoked when audio set interface request received
TU_ATTR_WEAK bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);

// Invoked when audio set interface request received which closes an EP
TU_ATTR_WEAK bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request);
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request);

// Invoked when audio class specific set request received for an EP
TU_ATTR_WEAK bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);

// Invoked when audio class specific set request received for an interface
TU_ATTR_WEAK bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);

// Invoked when audio class specific set request received for an entity
TU_ATTR_WEAK bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);

// Invoked when audio class specific get request received for an EP
TU_ATTR_WEAK bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request);
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request);

// Invoked when audio class specific get request received for an interface
TU_ATTR_WEAK bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);

// Invoked when audio class specific get request received for an entity
TU_ATTR_WEAK bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request);
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request);

//--------------------------------------------------------------------+
// Inline Functions
Expand Down
45 changes: 37 additions & 8 deletions src/class/bth/bth_device.c
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,14 @@ typedef struct
uint8_t itf_num;
uint8_t ep_ev;
uint8_t ep_acl_in;
uint16_t ep_acl_in_pkt_sz;
uint8_t ep_acl_out;
uint8_t ep_voice[2]; // Not used yet
uint8_t ep_voice_size[2][CFG_TUD_BTH_ISO_ALT_COUNT];

// Previous amount of bytes sent when issuing ZLP
uint32_t prev_xferred_bytes;

// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN bt_hci_cmd_t hci_cmd;
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_BTH_DATA_EPSIZE];
Expand Down Expand Up @@ -133,11 +137,25 @@ uint16_t btd_open(uint8_t rhport, tusb_desc_interface_t const *itf_desc, uint16_
TU_ASSERT(usbd_edpt_open(rhport, desc_ep), 0);
_btd_itf.ep_ev = desc_ep->bEndpointAddress;

desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);

// Open endpoint pair
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(desc_ep), 2, TUSB_XFER_BULK, &_btd_itf.ep_acl_out,
&_btd_itf.ep_acl_in), 0);
TU_ASSERT(usbd_open_edpt_pair(rhport, (uint8_t const *)desc_ep, 2,
TUSB_XFER_BULK, &_btd_itf.ep_acl_out,
&_btd_itf.ep_acl_in),
0);

// Save acl in endpoint max packet size
tusb_desc_endpoint_t const *desc_ep_acl_in = desc_ep;
for (size_t p = 0; p < 2; p++) {
if (tu_edpt_dir(desc_ep_acl_in->bEndpointAddress) == TUSB_DIR_IN) {
_btd_itf.ep_acl_in_pkt_sz = tu_edpt_packet_size(desc_ep_acl_in);
break;
}
desc_ep_acl_in = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep_acl_in);
}

itf_desc = (tusb_desc_interface_t const *)tu_desc_next(tu_desc_next(tu_desc_next(desc_ep)));
itf_desc = (tusb_desc_interface_t const *)tu_desc_next(tu_desc_next(desc_ep));

// Prepare for incoming data from host
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE), 0);
Expand Down Expand Up @@ -244,10 +262,8 @@ bool btd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t c
return true;
}

bool btd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void)result;

bool btd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result,
uint32_t xferred_bytes) {
// received new data from host
if (ep_addr == _btd_itf.ep_acl_out)
{
Expand All @@ -262,7 +278,20 @@ bool btd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t
}
else if (ep_addr == _btd_itf.ep_acl_in)
{
if (tud_bt_acl_data_sent_cb) tud_bt_acl_data_sent_cb((uint16_t)xferred_bytes);
if ((result == XFER_RESULT_SUCCESS) && (xferred_bytes > 0) &&
((xferred_bytes & (_btd_itf.ep_acl_in_pkt_sz - 1)) == 0)) {
// Save number of transferred bytes
_btd_itf.prev_xferred_bytes = xferred_bytes;

// Send zero-length packet
tud_bt_acl_data_send(NULL, 0);
} else if (tud_bt_acl_data_sent_cb) {
if (xferred_bytes == 0) {
xferred_bytes = _btd_itf.prev_xferred_bytes;
_btd_itf.prev_xferred_bytes = 0;
}
tud_bt_acl_data_sent_cb((uint16_t)xferred_bytes);
}
}

return true;
Expand Down
7 changes: 1 addition & 6 deletions src/class/hid/hid_device.c
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,6 @@
* This file is part of the TinyUSB stack.
*/

// ESP32 out-of-sync
#ifdef ARDUINO_ARCH_ESP32
#include "arduino/ports/esp32/tusb_config_esp32.h"
#endif

#include "tusb_option.h"

#if (CFG_TUD_ENABLED && CFG_TUD_HID)
Expand Down Expand Up @@ -139,7 +134,7 @@ uint8_t tud_hid_n_get_protocol(uint8_t instance) {
return _hidd_itf[instance].protocol_mode;
}

bool tud_hid_n_keyboard_report(uint8_t instance, uint8_t report_id, uint8_t modifier, uint8_t keycode[6]) {
bool tud_hid_n_keyboard_report(uint8_t instance, uint8_t report_id, uint8_t modifier, const uint8_t keycode[6]) {
hid_keyboard_report_t report;
report.modifier = modifier;
report.reserved = 0;
Expand Down
Loading

0 comments on commit f64cf2e

Please sign in to comment.