-
Notifications
You must be signed in to change notification settings - Fork 332
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #265 from VainF/v1.2
V1.2
- Loading branch information
Showing
39 changed files
with
208 additions
and
381 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -27,4 +27,5 @@ torch_pruning_bak | |
benchmarks/run | ||
output | ||
acc.png | ||
pretrained | ||
pretrained | ||
data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
import os, sys | ||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))))) | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from typing import Sequence | ||
import timm | ||
from timm.models.vision_transformer import Attention | ||
import torch_pruning as tp | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser(description='Prune timm models') | ||
parser.add_argument('--model', default=None, type=str, help='model name') | ||
parser.add_argument('--ch_sparsity', default=0.5, type=float, help='channel sparsity') | ||
parser.add_argument('--global_pruning', default=False, action='store_true', help='global pruning') | ||
parser.add_argument('--pretrained', default=False, action='store_true', help='global pruning') | ||
parser.add_argument('--list_models', default=False, action='store_true', help='list all models in timm') | ||
args = parser.parse_args() | ||
|
||
def main(): | ||
timm_models = timm.list_models() | ||
if args.list_models: | ||
print(timm_models) | ||
if args.model is None: | ||
return | ||
assert args.model in timm_models, "Model %s is not in timm model list: %s"%(args.model, timm_models) | ||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
model = timm.create_model(args.model, pretrained=args.pretrained, no_jit=True).eval().to(device) | ||
|
||
imp = tp.importance.GroupNormImportance() | ||
print("Pruning %s..."%args.model) | ||
|
||
input_size = model.default_cfg['input_size'] | ||
example_inputs = torch.randn(1, *input_size).to(device) | ||
test_output = model(example_inputs) | ||
ignored_layers = [] | ||
for m in model.modules(): | ||
if isinstance(m, nn.Linear) and m.out_features == model.num_classes: | ||
ignored_layers.append(m) | ||
print("Ignore classifier layer: ", m) | ||
|
||
print("========Before pruning========") | ||
print(model) | ||
base_macs, base_params = tp.utils.count_ops_and_params(model, example_inputs) | ||
pruner = tp.pruner.MagnitudePruner( | ||
model, | ||
example_inputs, | ||
global_pruning=args.global_pruning, # If False, a uniform sparsity will be assigned to different layers. | ||
importance=imp, # importance criterion for parameter selection | ||
iterative_steps=1, # the number of iterations to achieve target sparsity | ||
ch_sparsity=args.ch_sparsity, # target sparsity | ||
ignored_layers=ignored_layers, | ||
) | ||
for g in pruner.step(interactive=True): | ||
g.prune() | ||
|
||
print("========After pruning========") | ||
print(model) | ||
test_output = model(example_inputs) | ||
pruned_macs, pruned_params = tp.utils.count_ops_and_params(model, example_inputs) | ||
print("MACs: %.4f G => %.4f G"%(base_macs/1e9, pruned_macs/1e9)) | ||
print("Params: %.4f M => %.4f M"%(base_params/1e6, pruned_params/1e6)) | ||
|
||
if __name__=='__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,29 +1,53 @@ | ||
# Pruning Models from Timm | ||
|
||
## 0. Requirements | ||
|
||
## 0. List all models in Timm | ||
|
||
```bash | ||
pip install -r requirements.txt | ||
python prune_timm_models.py --list_models | ||
``` | ||
Tested environment: | ||
|
||
Output: | ||
``` | ||
pytorch==1.12.1 | ||
timm=0.9.2 | ||
['bat_resnext26ts', 'beit_base_patch16_224', 'beit_base_patch16_384', 'beit_large_patch16_224', 'beit_large_patch16_384', 'beit_large_patch16_512', 'beitv2_base_patch16_224', ...] | ||
``` | ||
|
||
## 1. Pruning | ||
|
||
```python | ||
python timm_pruning.py | ||
Some models might require additional modifications to enable pruning. For example, we need to reimplement the forward function of `vit` to relax the constraint in structure. Refer to [examples/transformers/prune_timm_vit.py](../transformers/prune_timm_vit.py) for more details. | ||
|
||
```bash | ||
python prune_timm_models.py --model convnext_xxlarge --ch_sparsity 0.5 # --global_pruning | ||
``` | ||
|
||
#### Outputs: | ||
Prunable: 119 models, | ||
``` | ||
['beit_base_patch16_224', 'beit_base_patch16_384', 'beit_large_patch16_224', 'beit_large_patch16_384', 'beit_large_patch16_512', 'beitv2_base_patch16_224', 'beitv2_large_patch16_224', 'botnet26t_256', 'botnet50ts_256', 'convmixer_768_32', 'convmixer_1024_20_ks9_p14', 'convmixer_1536_20', 'convnext_atto', 'convnext_atto_ols', 'convnext_base', 'convnext_femto', 'convnext_femto_ols', 'convnext_large', 'convnext_large_mlp', 'convnext_nano', 'convnext_nano_ols', 'convnext_pico', 'convnext_pico_ols', 'convnext_small', 'convnext_tiny', 'convnext_tiny_hnf', 'convnext_xlarge', 'convnext_xxlarge', 'convnextv2_atto', 'convnextv2_base', 'convnextv2_femto', 'convnextv2_huge', 'convnextv2_large', 'convnextv2_nano', 'convnextv2_pico', 'convnextv2_small', 'convnextv2_tiny', 'darknet17', 'darknet21', 'darknet53', 'darknetaa53', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'densenet264d', 'dla34', 'dla46_c', 'dla46x_c', 'dla60', 'dla60x', 'dla60x_c', 'dla102', 'dla102x', 'dla102x2', 'dla169', 'eca_botnext26ts_256', 'eca_resnet33ts', 'eca_resnext26ts', 'eca_vovnet39b', 'ecaresnet26t', 'ecaresnet50d', 'ecaresnet50d_pruned', 'ecaresnet50t', 'ecaresnet101d', 'ecaresnet101d_pruned', 'ecaresnet200d', 'ecaresnet269d', 'ecaresnetlight', 'ecaresnext26t_32x4d', 'ecaresnext50t_32x4d', 'efficientnet_b0', 'efficientnet_b0_g8_gn', 'efficientnet_b0_g16_evos', 'efficientnet_b0_gn', 'efficientnet_b1', 'efficientnet_b1_pruned', 'efficientnet_b2', 'efficientnet_b2_pruned', 'efficientnet_b2a', 'efficientnet_b3', 'efficientnet_b3_gn', 'efficientnet_b3_pruned', 'efficientnet_b3a', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'efficientnet_b8', 'efficientnet_el', 'efficientnet_el_pruned', 'efficientnet_em', 'efficientnet_es', 'efficientnet_es_pruned', 'efficientnet_l2', 'efficientnet_lite0', 'efficientnet_lite1', 'efficientnet_lite2', 'efficientnet_lite3', 'efficientnet_lite4', 'efficientnetv2_l', 'efficientnetv2_m', 'efficientnetv2_rw_m', 'efficientnetv2_rw_s', 'efficientnetv2_rw_t', 'efficientnetv2_s', 'efficientnetv2_xl', 'ese_vovnet19b_dw', 'ese_vovnet19b_slim', 'ese_vovnet19b_slim_dw', 'ese_vovnet39b', 'ese_vovnet57b', 'ese_vovnet99b', 'fbnetc_100', 'fbnetv3_b', 'fbnetv3_d', 'fbnetv3_g', 'gc_efficientnetv2_rw_t', 'gcresnet33ts'] | ||
``` | ||
========Before pruning======== | ||
... | ||
(norm_pre): Identity() | ||
(head): NormMlpClassifierHead( | ||
(global_pool): SelectAdaptivePool2d (pool_type=avg, flatten=Identity()) | ||
(norm): LayerNorm2d((3072,), eps=1e-05, elementwise_affine=True) | ||
(flatten): Flatten(start_dim=1, end_dim=-1) | ||
(pre_logits): Identity() | ||
(drop): Dropout(p=0.0, inplace=False) | ||
(fc): Linear(in_features=3072, out_features=1000, bias=True) | ||
) | ||
) | ||
Unprunable: 175 models, | ||
``` | ||
['bat_resnext26ts', 'caformer_b36', 'caformer_m36', 'caformer_s18', 'caformer_s36', 'cait_m36_384', 'cait_m48_448', 'cait_s24_224', 'cait_s24_384', 'cait_s36_384', 'cait_xs24_384', 'cait_xxs24_224', 'cait_xxs24_384', 'cait_xxs36_224', 'cait_xxs36_384', 'coat_lite_medium', 'coat_lite_medium_384', 'coat_lite_mini', 'coat_lite_small', 'coat_lite_tiny', 'coat_mini', 'coat_small', 'coat_tiny', 'coatnet_0_224', 'coatnet_0_rw_224', 'coatnet_1_224', 'coatnet_1_rw_224', 'coatnet_2_224', 'coatnet_2_rw_224', 'coatnet_3_224', 'coatnet_3_rw_224', 'coatnet_4_224', 'coatnet_5_224', 'coatnet_bn_0_rw_224', 'coatnet_nano_cc_224', 'coatnet_nano_rw_224', 'coatnet_pico_rw_224', 'coatnet_rmlp_0_rw_224', 'coatnet_rmlp_1_rw2_224', 'coatnet_rmlp_1_rw_224', 'coatnet_rmlp_2_rw_224', 'coatnet_rmlp_2_rw_384', 'coatnet_rmlp_3_rw_224', 'coatnet_rmlp_nano_rw_224', 'coatnext_nano_rw_224', 'convformer_b36', 'convformer_m36', 'convformer_s18', 'convformer_s36', 'convit_base', 'convit_small', 'convit_tiny', 'crossvit_9_240', 'crossvit_9_dagger_240', 'crossvit_15_240', 'crossvit_15_dagger_240', 'crossvit_15_dagger_408', 'crossvit_18_240', 'crossvit_18_dagger_240', 'crossvit_18_dagger_408', 'crossvit_base_240', 'crossvit_small_240', 'crossvit_tiny_240', 'cs3darknet_focus_l', 'cs3darknet_focus_m', 'cs3darknet_focus_s', 'cs3darknet_focus_x', 'cs3darknet_l', 'cs3darknet_m', 'cs3darknet_s', 'cs3darknet_x', 'cs3edgenet_x', 'cs3se_edgenet_x', 'cs3sedarknet_l', 'cs3sedarknet_x', 'cs3sedarknet_xdw', 'cspdarknet53', 'cspresnet50', 'cspresnet50d', 'cspresnet50w', 'cspresnext50', 'davit_base', 'davit_giant', 'davit_huge', 'davit_large', 'davit_small', 'davit_tiny', 'deit3_base_patch16_224', 'deit3_base_patch16_384', 'deit3_huge_patch14_224', 'deit3_large_patch16_224', 'deit3_large_patch16_384', 'deit3_medium_patch16_224', 'deit3_small_patch16_224', 'deit3_small_patch16_384', 'deit_base_distilled_patch16_224', 'deit_base_distilled_patch16_384', 'deit_base_patch16_224', 'deit_base_patch16_384', 'deit_small_distilled_patch16_224', 'deit_small_patch16_224', 'deit_tiny_distilled_patch16_224', 'deit_tiny_patch16_224', 'densenetblur121d', 'dla60_res2net', 'dla60_res2next', 'dm_nfnet_f0', 'dm_nfnet_f1', 'dm_nfnet_f2', 'dm_nfnet_f3', 'dm_nfnet_f4', 'dm_nfnet_f5', 'dm_nfnet_f6', 'dpn48b', 'dpn68', 'dpn68b', 'dpn92', 'dpn98', 'dpn107', 'dpn131', 'eca_halonext26ts', 'eca_nfnet_l0', 'eca_nfnet_l1', 'eca_nfnet_l2', 'eca_nfnet_l3', 'edgenext_base', 'edgenext_small', 'edgenext_small_rw', 'edgenext_x_small', 'edgenext_xx_small', 'efficientformer_l1', 'efficientformer_l3', 'efficientformer_l7', 'efficientformerv2_l', 'efficientformerv2_s0', 'efficientformerv2_s1', 'efficientformerv2_s2', 'efficientnet_b3_g8_gn', 'efficientnet_cc_b0_4e', 'efficientnet_cc_b0_8e', 'efficientnet_cc_b1_8e', 'ese_vovnet39b_evos', 'eva02_base_patch14_224', 'eva02_base_patch14_448', 'eva02_base_patch16_clip_224', 'eva02_enormous_patch14_clip_224', 'eva02_large_patch14_224', 'eva02_large_patch14_448', 'eva02_large_patch14_clip_224', 'eva02_large_patch14_clip_336', 'eva02_small_patch14_224', 'eva02_small_patch14_336', 'eva02_tiny_patch14_224', 'eva02_tiny_patch14_336', 'eva_giant_patch14_224', 'eva_giant_patch14_336', 'eva_giant_patch14_560', 'eva_giant_patch14_clip_224', 'eva_large_patch14_196', 'eva_large_patch14_336', 'flexivit_base', 'flexivit_large', 'flexivit_small', 'focalnet_base_lrf', 'focalnet_base_srf', 'focalnet_huge_fl3', 'focalnet_huge_fl4', 'focalnet_large_fl3', 'focalnet_large_fl4', 'focalnet_small_lrf', 'focalnet_small_srf', 'focalnet_tiny_lrf', 'focalnet_tiny_srf', 'focalnet_xlarge_fl3', 'focalnet_xlarge_fl4'] | ||
========After pruning======== | ||
... | ||
(norm_pre): Identity() | ||
(head): NormMlpClassifierHead( | ||
(global_pool): SelectAdaptivePool2d (pool_type=avg, flatten=Identity()) | ||
(norm): LayerNorm2d((1536,), eps=1e-05, elementwise_affine=True) | ||
(flatten): Flatten(start_dim=1, end_dim=-1) | ||
(pre_logits): Identity() | ||
(drop): Dropout(p=0.0, inplace=False) | ||
(fc): Linear(in_features=1536, out_features=1000, bias=True) | ||
) | ||
) | ||
MACs: 197.9920 G => 49.7716 G | ||
Params: 846.4710 M => 213.2587 M | ||
``` |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.