Skip to content

An rigorous, machine learning analysis pipeline for binary classification datasets assembled as parallelizable command line modules. Includes exploratory analysis, data processing, feature processing, ML modeling (11 algorithms) with hyperparameter sweeps, visualizations, and statistical analysis. A comprehensive starting point to adapt to your …

License

Notifications You must be signed in to change notification settings

UrbsLab/scikit_ML_Pipeline_Binary_Parallel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

scikit_ML_Pipeline_Binary_Parallel

An rigorous, well documented machine learning analysis pipeline for binary classification datasets assembled as parallelizable command line modules. Includes exploratory analysis, data processing, feature processing, ML modeling (11 algorithms) with hyperparameter sweeps, visualizations, and statistical analysis. A comprehensive starting point to adapt to your own dataset. Testing changes

About

An rigorous, machine learning analysis pipeline for binary classification datasets assembled as parallelizable command line modules. Includes exploratory analysis, data processing, feature processing, ML modeling (11 algorithms) with hyperparameter sweeps, visualizations, and statistical analysis. A comprehensive starting point to adapt to your …

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages