Skip to content

This repository contains a web application designed to execute relatively compact, locally-operated Large Language Models (LLMs).

License

Notifications You must be signed in to change notification settings

Uminosachi/open-llm-webui

Repository files navigation

Open LLM WebUI

This repository contains a web application designed to execute relatively compact, locally-operated Large Language Models (LLMs).

Installation

Please follow these steps to install the software:

  • Create a new conda environment:
conda create -n ollm python=3.10
conda activate ollm
  • Clone the software repository:
git clone https://github.com/Uminosachi/open-llm-webui.git
cd open-llm-webui

Python Package Installation

General Instructions

  • Install the necessary Python packages by executing:

    pip install -r requirements.txt

(Optional) Installation for Flash Attention

  • To enable Flash Attention in some models, if CUDA is available, install Flash Attention:

    pip install packaging ninja
    pip install flash-attn --no-build-isolation

Platform-Specific Instructions

  • For Windows (with CUDA support):

    Install pre-build wheel for Windows
    wget https://github.com/abetlen/llama-cpp-python/releases/download/v0.3.4-cu121/llama_cpp_python-0.3.4-cp310-cp310-win_amd64.whl
    pip install llama_cpp_python-0.3.4-cp310-cp310-win_amd64.whl
    pip install -r requirements.txt
    (Optional) Build with CUDA for Windows
    • Install Visual Studio:

      • ⚠️ Important: Make sure to select Desktop development with C++ during the installation process.
    • Copy MSBuild extensions for CUDA as an administrator (adjust the CUDA version v12.1 as needed):

      xcopy /e "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\visual_studio_integration\MSBuildExtensions" "C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Microsoft\VC\v170\BuildCustomizations"
    • Configure the required environment variables for the build (adjust the CUDA version as necessary):

      set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin;%PATH%
      "C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat"
      set FORCE_CMAKE=1
      set CMAKE_ARGS="-DGGML_CUDA=ON -DCMAKE_CXX_FLAGS=/utf-8 -DCMAKE_C_FLAGS=/utf-8"
      set CMAKE_BUILD_PARALLEL_LEVEL=16
    • Install the necessary Python packages (this process may take some time):

      pip install ninja cmake scikit-build-core[pyproject]
      pip install --force-reinstall --no-cache-dir llama-cpp-python
      pip install -r requirements.txt
  • For Linux (with CUDA support):

    Install pre-build wheel for Linux
    wget https://github.com/abetlen/llama-cpp-python/releases/download/v0.3.4-cu121/llama_cpp_python-0.3.4-cp310-cp310-linux_x86_64.whl
    pip install llama_cpp_python-0.3.4-cp310-cp310-linux_x86_64.whl
    pip install -r requirements.txt
    (Optional) Build with CUDA for Linux
    • Configure the required environment variables for the build (if not already set):

      export PATH=/usr/local/cuda/bin:${PATH}
      export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:/usr/local/cuda/lib64:${LD_LIBRARY_PATH}
    • Install the OpenMP libraries used for the build:

      sudo apt-get update
      sudo apt-get install libgomp1 libomp-dev
    • Install the necessary Python packages:

      pip install ninja cmake scikit-build-core[pyproject]
      export CMAKE_ARGS="-DGGML_CUDA=ON"
      pip install --force-reinstall --no-cache-dir llama-cpp-python
      pip install -r requirements.txt
  • For Mac OS (without CUDA support):

    • Install the necessary Python packages:

      BUILD_CUDA_EXT=0 pip install -r requirements.txt
    • Rebuild the bitsandbytes package with the CPU option.

      pip uninstall bitsandbytes
      git clone https://github.com/TimDettmers/bitsandbytes.git
      cd bitsandbytes
      cmake -DCOMPUTE_BACKEND=cpu -S .
      make
      pip install .
    • Known Issue: Running the LLaVA model on Mac results in an error.

Running the application

python ollm_app.py

Downloading the Model

To download the model:

  • Launch this application.
  • Click on the "Download model" button next to the LLM model ID.
  • Wait for the download to complete.

πŸ“œ Model List (transformers)

Provider Model Names
Microsoft Phi-3-mini-4k-instruct
Google gemma-2-9b-it, gemma-1.1-2b-it, gemma-1.1-7b-it
NVIDIA Llama3-ChatQA-1.5-8B
Qwen Qwen2-7B-Instruct
Mistral AI Mistral-7B-Instruct-v0.3
Rakuten RakutenAI-7B-chat, RakutenAI-7B-instruct
rinna youri-7b-chat
TheBloke Llama-2-7b-Chat-GPTQ, Kunoichi-7B-GPTQ
  • πŸ“‹ Note: By adding the repository paths of models to model_manager/add_tfs_models.txt, they will be included in the list of Model IDs and displayed in the UI.
  • πŸ” Note: The downloaded model file will be stored in the .cache/huggingface/hub directory of your home directory.

Access and Download Gemma and Llama Models

Login to Hugging Face

  • Before downloading any models, please log in via the command line using:

    huggingface-cli login

πŸ¦™ Model List (llama.cpp)

Provider Model Names
Microsoft Phi-3-mini-4k-instruct-q4.gguf, Phi-3-mini-4k-instruct-fp16.gguf
TheBloke llama-2-7b-chat.Q4_K_M.gguf
QuantFactory Meta-Llama-3-8B-Instruct.Q4_K_M.gguf

Using any GGUF file

  • πŸ” File Placement: Place files with the .gguf extension in the models directory within the open-llm-webui folder. These files will then appear in the model list on the llama.cpp tab of the web UI and can be used accordingly.
  • πŸ“ Metadata Usage: If the metadata of a GGUF model includes tokenizer.chat_template, this template will be used to create the prompts.

πŸ–ΌοΈ Model List (Multimodal LLaVA)

Provider Model Names
Microsoft Phi-3.5-vision-instruct, Phi-3-vision-128k-instruct
Meta Llama-3.2-11B-Vision (limited support as a trial)
llava-hf llava-v1.6-mistral-7b-hf, llava-v1.6-vicuna-7b-hf, llava-1.5-7b-hf
tinyllava TinyLLaVA-Phi-2-SigLIP-3.1B
openbmb MiniCPM-V-2_6-int4, MiniCPM-V-2_6, MiniCPM-Llama3-V-2_5-int4, MiniCPM-Llama3-V-2_5
SakanaAI EvoVLM-JP-v1-7B

Access and Download Llama 3 Models

Usage

  • Enter your message into the "Input text" box. Adjust the slider for "Max new tokens" as needed.
  • Under "Advanced options" adjust the settings for "Temperature", "Top k", "Top p", and "Repetition Penalty" as needed.
  • If replacing the system message of the prompt, under "Advanced options" enable the checkbox and enter text.
  • Press "Enter" on your keyboard or click the "Generate" button.
    • ⚠️ Note: If the cloud-based model has been updated, it may be downloaded upon execution.
  • If you click the "Clear chat" button, the chat history will be cleared.

transformers tab

  • By enabling the CPU execution checkbox, the model will use the argument device_map="cpu".
  • Some of the transformers models are loaded with the following 4-bit or 8-bit settings using the bitsandbytes package.

llama.cpp tab

  • Use the radio buttons in the Default chat template to select the template that will be used if the GGUF model lacks a chat_template.

LLaVA tab

  • You can upload an image to the LLaVA Image area of this tab and input a prompt related to the image.
  • Some of the LLaVA models are loaded with the following 4-bit or 8-bit settings using the bitsandbytes package.

Continuous Processing of Multiple Prompts

  • Enter input_prompts.json in the Input text textbox.

  • Ensure the input_prompts.json file in the current folder contains an array of objects with the key "prompt".

  • An example of the input_prompts.json file structure is as follows:

    [
      {
        "prompt": "What is your name?"
      },
      {
        "prompt": "How are you?"
      }
    ]

options

  • When you enable the Translate (ja->en/en->ja) checkbox:
    • Any input in Japanese will be automatically translated to English, and responses in English will be automatically translated back into Japanese.
    • ⚠️ Note: Downloading the translation model for the first time may take some time.

UI image

Model Credit

Developer Model License
Meta Llama-3.2 Llama 3.2 Community License
Meta Llama-3.1 Llama 3.1 Community License
Meta Llama-3 Llama 3 Community License
Meta Llama-2 Llama 2 Community License
Microsoft Phi-3.5, Phi-3 The MIT License
Google Gemma Gemma Terms of Use
NVIDIA Llama3-ChatQA Llama 3 Community License
Alibaba Group Qwen2-7B-Instruct Apache License 2.0
Mistral AI Mistral-7B-Instruct Apache License 2.0
Rakuten RakutenAI Apache License 2.0
rinna Youri Llama 2 Community License
Sanji Watsuki Kunoichi-7B CC-BY-NC-4.0
Hugging Face llava-v1.6-mistral-7b-hf Apache License 2.0
Hugging Face llava-v1.6-vicuna-7b-hf, llava-1.5-7b-hf Llama 2 Community License
TinyLLaVA TinyLLaVA-Phi-2-SigLIP-3.1B Apache License 2.0
OpenBMB MiniCPM MiniCPM Model License
Sakana AI EvoVLM-JP-v1-7B Apache License 2.0

About

This repository contains a web application designed to execute relatively compact, locally-operated Large Language Models (LLMs).

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages