-
Notifications
You must be signed in to change notification settings - Fork 7
/
origami_rectangle.py
498 lines (420 loc) · 28.4 KB
/
origami_rectangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"""
The :mod:`origami_rectangle` module defines the function :py:func:`origami_rectangle.create` for creating a DNA origami rectangle
using the :mod:`scadnano` module.
"""
from typing import List, Union, cast
# from . import scadnano as sc
import scadnano as sc
from enum import Enum, auto
# TODO: write version of origami_rectangle.create that uses add_nick and add_crossover.
class NickPattern(Enum):
"""Represents options for where to place nicks between staples."""
staggered = auto()
"""A nick appears in a given helix and column
if the parity of the helix and column match (both even or both odd).
"""
staggered_opposite = auto()
"""A nick appears in a given helix and column
if the parity of the helix and column don't match (one is even and the other is odd).
CURRENTLY UNSUPPORTED.
"""
even = auto()
"""A nick appears in every column and only even-index helices.
CURRENTLY UNSUPPORTED.
"""
odd = auto()
"""A nick appears in every column and only odd-index helices.
CURRENTLY UNSUPPORTED.
"""
staggered = NickPattern.staggered
"""Convenience reference defined so one can type :const:`origami_rectangle.staggered`
instead of :const:`origami_rectangle.NickPattern.staggered`."""
staggered_opposite = NickPattern.staggered_opposite
"""Convenience reference defined so one can type :const:`origami_rectangle.staggered_opposite`
instead of :const:`origami_rectangle.NickPattern.staggered_opposite`.
CURRENTLY UNSUPPORTED."""
even = NickPattern.even
"""Convenience reference defined so one can type :const:`origami_rectangle.even`
instead of :const:`origami_rectangle.NickPattern.even`.
CURRENTLY UNSUPPORTED."""
odd = NickPattern.odd
"""Convenience reference defined so one can type :const:`origami_rectangle.odd`
instead of :const:`origami_rectangle.NickPattern.odd`.
CURRENTLY UNSUPPORTED."""
def create(*, num_helices: int, num_cols: int, assign_seq: bool = True, seam_left_column: int = -1,
nick_pattern: NickPattern = NickPattern.staggered,
twist_correction_deletion_spacing: int = 0, twist_correction_start_col: int = 1,
twist_correction_deletion_offset: int = -1,
num_flanking_columns: int = 1, num_flanking_helices: int = 0,
custom_scaffold: str = None, edge_staples: bool = True,
scaffold_nick_offset: int = -1) -> sc.Design:
"""
Creates a DNA origami rectangle with a given number of helices and "columns"
(16-base-wide region in each helix).
The columns include the 16-base regions on the end where potential "edge staples" go,
as well as the two-column-wide "seam" region in the middle.
Below is an example diagram of the staples created by this function.
Consider for example the function call
``create(num_helices=8, num_cols=10, nick_pattern=origami_rectangle.staggered)``.
The scaffold strand resulting from this call is shown below:
.. code-block:: none
# C0 # C1 # C2 # C3 # C4 # C5 # C6 # C7 # C8 # C9 #
H0 +--------------- ---------------- ---------------- ---------------- ---------------- ---------------- ---------------- ---------------- ---------------- ---------------+
| |
H1 +--------------- ---------------- ---------------- ---------------- ---------------+ +--------------- ---------------- ---------------- ---------------- ---------------+
| |
H2 +--------------- ---------------- ---------------- ---------------- ---------------+ +--------------- ---------------- ---------------- ---------------- ---------------+
| |
H3 +--------------- ---------------- ---------------- ---------------- ---------------+ +--------------- ---------------- ---------------- ---------------- ---------------+
| |
H4 +--------------- ---------------- ---------------- ---------------- ---------------+ +--------------- ---------------- ---------------- ---------------- ---------------+
| |
H5 +--------------- ---------------- ---------------- ---------------- ---------------+ +--------------- ---------------- ---------------- ---------------- ---------------+
| |
H6 +--------------- ---------------- ---------------- ---------------- ---------------+ +--------------- ---------------- ---------------- ---------------- ---------------+
| |
H7 +--------------- ---------------- ---------------- ---------------- ---------------] <--------------- ---------------- ---------------- ---------------- ---------------+
Helix indices are labelled ``H0``, ``H1``, ... and column indices are labeled ``C0``, ``C1``, ...
Each single symbol ``-``, ``+``, ``<``, ``>``, ``[``, ``]``, ``+``
represents one DNA base, so each column is 16 bases wide.
The ``#`` is a visual delimiter between columns and does not represent any bases,
nor do spaces between the base-representing symbols.
The 5' end of a strand is indicated with ``[`` or ``]``
and the 3' end is indicated with ``>`` or ``<``.
A crossover is indicated with
.. code-block:: none
+
|
+
Below are the staples resulting from this same call.
.. code-block:: none
# C0 # C1 # C2 # C3 # C4 # C5 # C6 # C7 # C8 # C9 #
H0 <--------------+ +--------------- -------]<------+ +--------------- -------]<------+ +--------------- -------]<------+ +--------------- -------]<------+ +--------------]
| | | | | | | |
H1 [--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +-------------->
| | | | | | | |
H2 <--------------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------]
| | | | | | | |
H3 [--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +-------------->
| | | | | | | |
H4 <--------------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------]
| | | | | | | |
H5 [--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +------>[------+ +--------------+ +-------------->
| | | | | | | |
H6 <--------------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------+ +------]<------+ +--------------]
| | | | | | | |
H7 [--------------+ +------>[------- ---------------+ +------>[------- ---------------+ +------>[------- ---------------+ +------>[------- ---------------+ +-------------->
The seam crosses columns ``C4`` and ``C5``.
The left and right edge staples respectively are in columns ``C0`` and ``C9``.
Prints warning if number of bases exceeds 7249 (length of standard M13 scaffold strand),
but does not otherwise cause an error.
Here's an example of using :any:`origami_rectangle.create` to create a design for a
16-helix rectangle and write it to a file readable by scadnano.
(By default the output file name is the same as the script calling
:py:meth:`scadnano.Design.write_scadnano_file`
but with the extension ``.py`` changed to ``.dna``.)
.. code-block:: Python
import origami_rectangle as rect
# XXX: ensure num_cols is even since we divide it by 2
design = rect.create(num_helices=16, num_cols=24, nick_pattern=rect.staggered)
design.write_scadnano_file()
However, we caution that :py:func:`create` is not intended to be very
extensible for creating many different types of DNA origami. It is more intended as an
example whose source code can be an efficient reference to learn the :mod:`scadnano` API.
:param num_helices:
number of helices. must be even.
:param num_cols:
number of "columns" as defined above. must be even and at least 4.
:param assign_seq:
whether to assign a DNA sequence to the scaffold. If True, uses `custom_scaffold` if it is not None,
or M13 otherwise.
:param seam_left_column:
specifies the location of the seam. (i.e., scaffold crossovers in the middle of the origami.)
If positive, the seam occupies two columns, and `seam_left_column` specifies the column on the left.
To make the crossover geometry work out, a nonnegative `seam_left_column` must be even,
greater than 0, and less than `num_helices` - 2.
If negative, it is calculated automatically to be roughly in the middle.
:param nick_pattern:
describes whether nicks between staples should be "staggered" or not.
See :class:`origami_rectangle.NickPattern` for details.
:param twist_correction_deletion_spacing:
If `twist_correction_deletion_spacing` > 0, adds deletions between crossovers in one out of
every `twist_correction_deletion_spacing` columns.
See this paper for an explanation of twist correction in DNA origami:
*Programmable molecular recognition based on the geometry of DNA nanostructures*,
Sungwook Woo and Paul W. K. Rothemund, Nature Chemistry, volume 3, pages 620–627 (2011)
https://doi.org/10.1038/nchem.1070
:param twist_correction_start_col:
ignored if `twist_correction_deletion_spacing` <= 0, otherwise
it indicates the column at which to put the first deletions. Default = 1.
:param twist_correction_deletion_offset:
the *relative* offset of the deletion, relative to the left side of the column.
:param num_flanking_columns:
the number of empty columns on the helix on each side of the origami.
:param num_flanking_helices:
the number of empty helices above and below the origami.
:param custom_scaffold:
the scaffold sequence to use.
If set to ``None``, the standard 7249-base M13 is used: :py:func:`scadnano.m13`.
:param edge_staples:
indicates whether to include the edge staples. (Leaving them out prevents multiple
origami rectangles from polymerizing in solution due to base stacking interactions on the left and
right edges of the origami rectangle.)
:param scaffold_nick_offset:
the position of the "nick" on the scaffold (the M13 scaffold is circular, so for such a scaffold
this really represents where any unused and undepicted bases of the scaffold will
form a loop-out). If negative (default value) then it will be chosen to be along the origami seam.
:return:
a :any:`Design` representing a DNA origami rectangle
""" # noqa (This line is here to suppress a PEP warning about long lines in the source code)
if num_cols < 4:
raise ValueError(f'num_cols must be at least 4 but is {num_cols}')
# if num_cols % 4 != 2:
# raise ValueError(f'num_cols must be congruent to 2 mod 4 (6, 10, 14, 18, 22, ...) but is {num_cols}')
if num_cols % 2 != 0:
raise ValueError(f'num_cols must be even, but is {num_cols}')
if num_helices % 2 != 0:
raise ValueError(f'num_helices must be even but is {num_helices}')
if num_cols * num_helices * BASES_PER_COLUMN > 7249:
print(f'WARNING: you chose {num_cols} columns and {num_helices} helices, '
f'which requires {num_cols * num_helices * BASES_PER_COLUMN} bases, '
f'greater than the 7249 available in standard M13.')
if seam_left_column < 0:
seam_left_column = num_cols // 2 - 1
if seam_left_column % 2 == 1:
seam_left_column += 1
if seam_left_column % 2 == 1:
raise ValueError(f'seam_left_column must be even but is {seam_left_column}')
# allow empty "flanking" columns on each side
num_bases_per_helix = BASES_PER_COLUMN * (num_cols + 2 * num_flanking_columns)
# leftmost x offset
offset_start = BASES_PER_COLUMN * num_flanking_columns
# rightmost x offset
offset_end = offset_start + BASES_PER_COLUMN * num_cols
# x offset just to left of seam
offset_mid = offset_start + BASES_PER_COLUMN * (seam_left_column + 1)
helices = _create_helices(num_helices + 2 * num_flanking_helices, num_bases_per_helix)
scaffold = _create_scaffold(offset_start, offset_end, offset_mid, num_helices, num_flanking_helices,
scaffold_nick_offset)
staples = _create_staples(offset_start, offset_end, offset_mid, num_helices, num_flanking_helices,
num_cols, nick_pattern, edge_staples)
design = sc.Design(helices=helices, strands=[scaffold] + staples, grid=sc.square)
if twist_correction_deletion_spacing > 0:
add_twist_correction_deletions(design=design,
offset_start=offset_start,
deletion_spacing=twist_correction_deletion_spacing,
deletion_start_col=twist_correction_start_col,
deletion_offset=twist_correction_deletion_offset,
num_helices=num_helices,
num_cols=num_cols,
num_flanking_helices=num_flanking_helices)
if assign_seq:
scaffold_seq = sc.m13() if custom_scaffold is None else custom_scaffold
design.assign_dna(scaffold, scaffold_seq)
return design
BASES_PER_COLUMN = 16
def _create_helices(num_helices: int, num_bases_per_helix: int) -> List[sc.Helix]:
return [sc.Helix(max_offset=num_bases_per_helix) for _ in range(num_helices)]
def _create_scaffold(offset_start: int, offset_end: int, offset_mid: int, num_helices: int,
num_flanking_helices: int, scaffold_nick_offset: int) -> sc.Strand:
# top domain is continguous
top_domain = sc.Domain(helix=0 + num_flanking_helices, forward=True,
start=offset_start, end=offset_end)
domains_left = []
domains_right = []
if scaffold_nick_offset < 0:
scaffold_nick_offset = offset_mid
for helix in range(1 + num_flanking_helices, num_helices + num_flanking_helices):
# otherwise there's a nick (bottom helix) or the seam crossover (all other than top and bottom)
# possibly nick on bottom helix is not along seam
center_offset = offset_mid if helix < num_helices + num_flanking_helices - 1 else scaffold_nick_offset
forward = (helix % 2 == num_flanking_helices % 2)
left_domain = sc.Domain(helix=helix, forward=forward,
start=offset_start, end=center_offset)
right_domain = sc.Domain(helix=helix, forward=forward,
start=center_offset, end=offset_end)
domains_left.append(left_domain)
domains_right.append(right_domain)
domains_left.reverse()
domains = cast(List[Union[sc.Domain, sc.Loopout]], # noqa
domains_left + [top_domain] + domains_right) # type: ignore
return sc.Strand(domains=domains, color=sc.default_scaffold_color, is_scaffold=True)
def _create_staples(offset_start: int, offset_end: int, offset_mid: int, num_helices: int,
num_flanking_helices: int, num_cols: int,
nick_pattern: NickPattern, edge_staples: bool) -> List[sc.Strand]:
if edge_staples:
left_edge_staples = _create_left_edge_staples(offset_start, num_helices, num_flanking_helices)
right_edge_staples = _create_right_edge_staples(offset_end, num_helices, num_flanking_helices)
else:
left_edge_staples = []
right_edge_staples = []
seam_staples = _create_seam_staples(offset_mid, num_helices, num_flanking_helices)
inner_staples = _create_inner_staples(offset_start, offset_end, offset_mid, num_helices,
num_flanking_helices, num_cols, nick_pattern)
return left_edge_staples + right_edge_staples + seam_staples + inner_staples
def _create_seam_staples(offset_mid: int, num_helices: int, num_flanking_helices: int) -> List[sc.Strand]:
staples = []
crossover_left = offset_mid - BASES_PER_COLUMN
crossover_right = offset_mid + BASES_PER_COLUMN
nick_bot = crossover_left + 8
nick_top = crossover_right - 8
for helix in range(1 + num_flanking_helices, num_helices + num_flanking_helices - 1, 2):
bot_helix_forward = False
ss_left_top = sc.Domain(helix=helix, forward=not bot_helix_forward,
start=crossover_left, end=nick_top)
ss_left_bot = sc.Domain(helix=helix + 1, forward=bot_helix_forward,
start=crossover_left, end=nick_bot)
ss_right_bot = sc.Domain(helix=helix + 1, forward=bot_helix_forward,
start=nick_bot, end=crossover_right)
ss_right_top = sc.Domain(helix=helix, forward=not bot_helix_forward,
start=nick_top, end=crossover_right)
staple_left = sc.Strand(domains=[ss_left_bot, ss_left_top])
staple_right = sc.Strand(domains=[ss_right_top, ss_right_bot])
staples.append(staple_left)
staples.append(staple_right)
first_helix = num_flanking_helices
last_helix = num_flanking_helices + num_helices - 1
first_staple_ss = sc.Domain(helix=first_helix, forward=False,
start=nick_bot, end=nick_bot + BASES_PER_COLUMN * 2)
last_staple_ss = sc.Domain(helix=last_helix, forward=True,
start=nick_top - BASES_PER_COLUMN * 2, end=nick_top)
first_staple = sc.Strand(domains=[first_staple_ss])
last_staple = sc.Strand(domains=[last_staple_ss])
return [first_staple] + staples + [last_staple]
def _create_left_edge_staples(offset_start: int, num_helices: int,
num_flanking_helices: int) -> List[sc.Strand]:
staples = []
crossover_right = offset_start + BASES_PER_COLUMN
for helix in range(0 + num_flanking_helices, num_helices + num_flanking_helices, 2):
bot_helix_forward = True
ss_5p_bot = sc.Domain(helix=helix + 1, forward=bot_helix_forward,
start=offset_start, end=crossover_right)
ss_3p_top = sc.Domain(helix=helix, forward=not bot_helix_forward,
start=offset_start, end=crossover_right)
staple = sc.Strand(domains=[ss_5p_bot, ss_3p_top])
staples.append(staple)
return staples
def _create_right_edge_staples(offset_end: int, num_helices: int,
num_flanking_helices: int) -> List[sc.Strand]:
staples = []
crossover_left = offset_end - BASES_PER_COLUMN
for helix in range(0 + num_flanking_helices, num_helices + num_flanking_helices, 2):
bot_helix_forward = True
ss_5p_top = sc.Domain(helix=helix, forward=not bot_helix_forward,
start=crossover_left, end=offset_end)
ss_3p_bot = sc.Domain(helix=helix + 1, forward=bot_helix_forward,
start=crossover_left, end=offset_end)
staple = sc.Strand(domains=[ss_5p_top, ss_3p_bot])
staples.append(staple)
return staples
def _create_inner_staples(offset_start: int, offset_end: int, offset_mid: int, num_helices: int,
num_flanking_helices: int, num_cols: int,
nick_pattern: NickPattern) -> List[sc.Strand]:
if nick_pattern is not NickPattern.staggered:
raise NotImplementedError("Currently can only handle staggered nick pattern")
# if ((num_cols - 4) // 2) % 2 != 0:
# raise NotImplementedError("Currently can only handle num_cols such that an even number of "
# "columns appear between each edge column and seam column, "
# "i.e., ((num_cols - 4) // 2) % 2 == 0")
len_half_col = BASES_PER_COLUMN // 2
staples = []
for col in range(num_cols):
x_l = offset_start + BASES_PER_COLUMN * col
x_r = offset_start + BASES_PER_COLUMN * (col + 1)
x_mid_col = x_l + len_half_col
if (x_l == offset_start # skip left edge column
or x_r == offset_mid # skip left seam column
or x_l == offset_mid # skip right seam column
or x_r == offset_end): # skip right edge column
continue
if col % 2 == 1:
# special staple in odd column is 24-base staple along top helix
h1_forward = True
ss_top_5p_h0 = sc.Domain(helix=0 + num_flanking_helices, forward=not h1_forward,
start=x_l, end=x_mid_col + BASES_PER_COLUMN)
ss_top_3p_h1 = sc.Domain(helix=1 + num_flanking_helices, forward=h1_forward,
start=x_l, end=x_mid_col)
staple_top = sc.Strand(domains=[ss_top_5p_h0, ss_top_3p_h1])
staples.append(staple_top)
for helix in range(1 + num_flanking_helices, num_helices + num_flanking_helices - 2, 2):
helix_i_forward = True
ss_helix_i = sc.Domain(helix=helix, forward=helix_i_forward,
start=x_mid_col, end=x_r)
ss_helix_ip1 = sc.Domain(helix=helix + 1, forward=not helix_i_forward,
start=x_l, end=x_r)
ss_helix_ip2 = sc.Domain(helix=helix + 2, forward=helix_i_forward,
start=x_l, end=x_mid_col)
staple = sc.Strand(domains=[ss_helix_i, ss_helix_ip1, ss_helix_ip2])
staples.append(staple)
else:
# special staple in even column is 24-base staple along bottom helix (hm1="helix minus 1")
hm1_forward = True
ss_bot_5p_hm1 = sc.Domain(helix=num_helices + num_flanking_helices - 1, forward=hm1_forward,
start=x_mid_col - BASES_PER_COLUMN, end=x_r)
ss_bot_3p_hm2 = sc.Domain(helix=num_helices + num_flanking_helices - 2,
forward=not hm1_forward,
start=x_mid_col, end=x_r)
staple_bot = sc.Strand(domains=[ss_bot_5p_hm1, ss_bot_3p_hm2])
staples.append(staple_bot)
for helix in range(0 + num_flanking_helices, num_helices + num_flanking_helices - 3, 2):
helix_i_forward = False
ss_helix_i = sc.Domain(helix=helix, forward=helix_i_forward,
start=x_mid_col, end=x_r)
ss_helix_ip1 = sc.Domain(helix=helix + 1, forward=not helix_i_forward,
start=x_l, end=x_r)
ss_helix_ip2 = sc.Domain(helix=helix + 2, forward=helix_i_forward,
start=x_l, end=x_mid_col)
staple = sc.Strand(domains=[ss_helix_ip2, ss_helix_ip1, ss_helix_i])
staples.append(staple)
return staples
def add_deletion_in_range(design: sc.Design, helix: int, start: int, end: int, deletion_offset: int) -> None:
# Inserts deletion somewhere in given range.
# `offset` is the relative offset within a column at which to put the deletions.
# If negative, chooses first available offset.
candidate_offsets = []
for candidate_deletion_offset in range(start, end):
if valid_deletion_offset(design, helix, candidate_deletion_offset):
candidate_offsets.append(candidate_deletion_offset)
if len(candidate_offsets) == 0:
raise ValueError(f"no pair of Substrands found on Helix {helix} "
f"overlapping interval [{start},{end})")
if deletion_offset < 0:
# pick offset furthest from edges of interval
candidate_offsets.sort(key=lambda offset: min(offset - start, end - offset))
deletion_absolute_offset = candidate_offsets[0]
else:
deletion_absolute_offset = start + deletion_offset
design.add_deletion(helix, deletion_absolute_offset)
def valid_deletion_offset(design: sc.Design, helix: int, offset: int) -> bool:
domains_at_offset = design.domains_at(helix, offset)
if len(domains_at_offset) > 2:
raise ValueError(f'Invalid Design; more than two Substrands found at '
f'helix {helix} and offset {offset}: '
f'{domains_at_offset}')
elif len(domains_at_offset) != 2:
return False
for ss in domains_at_offset:
if offset in ss.deletions:
return False # already a deletion there
if offset in (insertion[0] for insertion in ss.insertions):
return False # already an insertion there
if offset == ss.start:
return False # no 5' end
if offset == ss.end - 1:
return False # no 3' end
return True
def add_twist_correction_deletions(design: sc.Design,
offset_start: int,
deletion_spacing: int,
deletion_start_col: int,
deletion_offset: int,
num_helices: int,
num_cols: int,
num_flanking_helices: int) -> None:
for col in range(deletion_start_col, num_cols):
col_start = offset_start + col * BASES_PER_COLUMN
col_end = offset_start + (col + 1) * BASES_PER_COLUMN
if (col - deletion_start_col) % deletion_spacing == 0:
for helix in range(num_flanking_helices, num_flanking_helices + num_helices):
add_deletion_in_range(design=design, helix=helix, start=col_start + 1,
end=col_end - 1, deletion_offset=deletion_offset)