Skip to content

Commit

Permalink
[YAML EXAMPLES]
Browse files Browse the repository at this point in the history
  • Loading branch information
Your Name committed Oct 24, 2024
1 parent 771abe4 commit 9d23de0
Show file tree
Hide file tree
Showing 39 changed files with 523,004 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import os
from swarms import Agent
from swarm_models import OpenAIChat

from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Retrieve the OpenAI API key from the environment variable
api_key = os.getenv("GROQ_API_KEY")

# Initialize the model for OpenAI Chat
model = OpenAIChat(
openai_api_base="https://api.groq.com/openai/v1",
openai_api_key=api_key,
model_name="llama-3.1-70b-versatile",
temperature=0.1,
)

# Initialize the agent with automated prompt engineering enabled
agent = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt=None, # System prompt is dynamically generated
agent_description=None,
llm=model,
max_loops=1,
autosave=True,
dashboard=False,
verbose=False,
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
user_name="Human:",
return_step_meta=False,
output_type="string",
streaming_on=False,
auto_generate_prompt=True, # Enable automated prompt engineering
)

# Run the agent with a task description and specify the device
agent.run(
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria",
## Will design a system prompt based on the task if description and system prompt are None
device="cpu",
)

# Print the dynamically generated system prompt
print(agent.system_prompt)
290 changes: 290 additions & 0 deletions examples/agents/research/NeuraXplorer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,290 @@
import os
from datetime import datetime
from typing import List, Optional

from dotenv import load_dotenv
from loguru import logger
from pydantic import BaseModel, Field
from swarm_models import OpenAIChat

from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)

load_dotenv()

# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")

# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.1,
max_tokens=2000,
)

# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
return_step_meta=False,
# output_type="json",
output_type=str,
)


class ThoughtLog(BaseModel):
"""
Pydantic model to log each thought generated by the agent.
"""

thought: str
timestamp: datetime = Field(default_factory=datetime.now)
recursion_depth: int


class MemoryLog(BaseModel):
"""
Pydantic model to log memory states during the agent's execution.
"""

thoughts: List[ThoughtLog] = []
final_result: Optional[str] = None
completion_status: bool = False
task: str


class RecursiveAgent(Agent):
"""
An autonomous agent built on top of the Swarms Agent framework.
Capable of recursively exploring tasks using a Tree of Thoughts mechanism.
Attributes:
- agent_name (str): The name of the agent.
- system_prompt (str): The system prompt guiding the agent's behavior.
- max_loops (int): The maximum depth for recursion in the Tree of Thoughts.
- memory_limit (int): The maximum number of thought logs to store.
- memory (MemoryLog): Pydantic model to store thoughts and logs.
"""

def __init__(
self,
agent_name: str,
system_prompt: str,
max_loops: int,
memory_limit: int = 5,
agent: Agent = agent,
*args,
**kwargs,
) -> None:
"""
Initialize the RecursiveAgent.
:param agent_name: Name of the agent.
:param system_prompt: The prompt guiding the agent's behavior.
:param max_loops: The maximum number of recursive loops allowed.
:param memory_limit: Maximum number of memory entries.
:param kwargs: Additional arguments passed to the base Agent.
"""
super().__init__(agent_name=agent_name, **kwargs)
self.system_prompt = system_prompt
self.max_loops = max_loops
self.memory = MemoryLog(task="")
self.memory_limit = memory_limit # Max thoughts to store
self.finished = False # Task completion flag
self.agent = agent(
agent_name=agent_name,
system_prompt=system_prompt,
max_loops=max_loops,
)
logger.info(
f"Initialized agent {self.agent_name} with recursion limit of {self.max_loops}"
)

def add_to_memory(
self, thought: str, recursion_depth: int
) -> None:
"""
Add a thought to the agent's memory using the Pydantic ThoughtLog model.
:param thought: The thought generated by the agent.
:param recursion_depth: The depth of the current recursion.
"""
if len(self.memory.thoughts) >= self.memory_limit:
logger.debug(
"Memory limit reached, discarding the oldest memory entry."
)
self.memory.thoughts.pop(0) # Maintain memory size
thought_log = ThoughtLog(
thought=thought, recursion_depth=recursion_depth
)
self.memory.thoughts.append(thought_log)
logger.info(
f"Added thought to memory at depth {recursion_depth}: {thought}"
)

def check_if_finished(self, current_thought: str) -> bool:
"""
Check if the task is finished by evaluating the current thought.
:param current_thought: The current thought or reasoning result.
:return: True if task completion keywords are found, else False.
"""
# Define criteria for task completion based on keywords
completion_criteria = [
"criteria met",
"task completed",
"done",
"fully solved",
]
if any(
keyword in current_thought.lower()
for keyword in completion_criteria
):
self.finished = True
self.memory.completion_status = True
logger.info(
f"Task completed with thought: {current_thought}"
)
return self.finished

def run_tree_of_thoughts(
self, task: str, current_depth: int = 0
) -> Optional[str]:
"""
Recursively explore thought branches based on the Tree of Thoughts mechanism.
:param task: The task or query to be reasoned upon.
:param current_depth: The current recursion depth.
:return: The final solution or message indicating task completion or failure.
"""
logger.debug(f"Current recursion depth: {current_depth}")
if current_depth >= self.max_loops:
logger.warning(
"Max recursion depth reached, task incomplete."
)
return "Max recursion depth reached, task incomplete."

# Generate multiple possible thoughts/branches using Swarms logic
response = self.generate_thoughts(task)
thoughts = self.extract_thoughts(response)
self.memory.task = task # Log the task in memory

# Store thoughts in memory
for idx, thought in enumerate(thoughts):
logger.info(
f"Exploring thought {idx + 1}/{len(thoughts)}: {thought}"
)
self.add_to_memory(thought, current_depth)

if self.check_if_finished(thought):
self.memory.final_result = (
thought # Log the final result
)
return f"Task completed with thought: {thought}"

# Recursive exploration
result = self.run_tree_of_thoughts(
thought, current_depth + 1
)

if self.finished:
return result

return "Exploration done but no valid solution found."

def generate_thoughts(self, task: str) -> str:
"""
Generate thoughts for the task using the Swarms framework.
:param task: The task or query to generate thoughts for.
:return: A string representing multiple thought branches generated by Swarms logic.
"""
logger.debug(f"Generating thoughts for task: {task}")
response = self.agent.run(
task
) # Assuming Swarms uses an LLM for thought generation
return response

def extract_thoughts(self, response: str) -> List[str]:
"""
Extract individual thoughts/branches from the LLM's response.
:param response: The response string containing multiple thoughts.
:return: A list of extracted thoughts.
"""
logger.debug(f"Extracting thoughts from response: {response}")
return [
thought.strip()
for thought in response.split("\n")
if thought
]

def reflect(self) -> str:
"""
Reflect on the task and thoughts stored in memory, providing a summary of the process.
The reflection will be generated by the LLM based on the stored thoughts.
:return: Reflection output generated by the LLM.
"""
logger.debug("Running reflection on the task.")

# Compile all thoughts into a prompt for reflection
thoughts_for_reflection = "\n".join(
[
f"Thought {i + 1}: {log.thought}"
for i, log in enumerate(self.memory.thoughts)
]
)
reflection_prompt = (
f"Reflect on the following task and thoughts:\n"
f"Task: {self.memory.task}\n"
f"Thoughts:\n{thoughts_for_reflection}\n"
"What did we learn from this? How could this process be improved?"
)

# Use the agent's LLM to generate a reflection based on the memory
reflection_response = self.agent.run(reflection_prompt)
self.memory.final_result = reflection_response

logger.info(f"Reflection generated: {reflection_response}")
return reflection_response


# # Example usage of the RecursiveAgent

# if __name__ == "__main__":
# # Example initialization and running
# agent_name = "Autonomous-Financial-Agent"
# system_prompt = "You are a highly intelligent agent designed to handle financial queries efficiently."
# max_loops = 1

# # Initialize the agent using Swarms
# agent = RecursiveAgent(
# agent_name=agent_name,
# system_prompt=system_prompt,
# max_loops=max_loops
# )

# # Define the task for the agent
# task = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"

# # Run the tree of thoughts mechanism
# result = agent.run_tree_of_thoughts(task)
# logger.info(f"Final result: {result}")

# # Perform reflection
# reflection = agent.reflect()
# logger.info(f"Reflection: {reflection}")
Loading

0 comments on commit 9d23de0

Please sign in to comment.