Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make GivensQ subtype AbstractQ, use API #5

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "UpdatableQRFactorizations"
uuid = "8b110c62-ada2-4dd7-b53a-29f29fe8f7f4"
authors = ["Sebastian Ament <[email protected]>"]
version = "1.0.0"
version = "1.0.1"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
3 changes: 2 additions & 1 deletion src/UpdatableQRFactorizations.jl
Original file line number Diff line number Diff line change
@@ -1,12 +1,13 @@
module UpdatableQRFactorizations

using LinearAlgebra
using LinearAlgebra: Givens
using LinearAlgebra: Givens, AbstractQ

export AbstractQR, GivensQ, GivensQR, UpdatableGivensQR, UpdatableQR, UQR,
add_column!, remove_column!

const AbstractMatOrFac{T} = Union{AbstractMatrix{T}, Factorization{T}}
const AdjointQ = isdefined(LinearAlgebra, :AdjointQ) ? LinearAlgebra.AdjointQ : Adjoint

# IDEA: could have efficient version for sparse matrices
include("abstract.jl")
Expand Down
13 changes: 8 additions & 5 deletions src/abstract.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,18 @@ abstract type AbstractQR{T} <: Factorization{T} end
# AbstractQR assumes existence of n, m, Q, R fields
Base.size(F::AbstractQR) = (F.n, F.m)
Base.size(F::AbstractQR, i::Int) = i > 2 ? 1 : size(F)[i]
Base.eltype(F::AbstractQR{T}) where T = T
Base.eltype(::AbstractQR{T}) where T = T

Base.:\(F::AbstractQR, x::AbstractVecOrMat) = ldiv!(F, copy(x))
# disambiguation
Base.:\(F::AbstractQR{T}, B::VecOrMat{Complex{T}}) where {T<:LinearAlgebra.BlasReal} =
complex.(F \ real(B), F \ imag(B))

# some helpers
"""
```

number_of_rotations(n::Int, m::Int)
```

Computes the number of Givens rotations that are necessary to compute the QR
factorization of a general matrix of size n by m.
"""
Expand All @@ -25,9 +28,9 @@ number_of_rotations_to_append_column(n::Int, m::Int, k::Int = 1) = k*(n-m) - (k*
number_of_rotations_to_remove_column(m::Int, k::Int) = m-k

"""
```

allocate_rotations(T::DataType, n::Int, m::Int)
```

Allocates a vector of Givens rotations of a length that is necessary to compute
the QR factorization of a general matrix of size n by m.
"""
Expand Down
113 changes: 75 additions & 38 deletions src/givensQ.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Givens representation of Q matrix, memory efficient compared to dense representation
struct GivensQ{T, QT<:AbstractVector{<:Givens{T}}} <: Factorization{T}
struct GivensQ{T, QT<:AbstractVector{<:Givens{T}}} <: AbstractQ{T}
rotations::QT
n::Int
m::Int
Expand All @@ -15,67 +15,104 @@ end
Base.size(F::GivensQ) = (F.n, F.n) # could be square but also (n, m)?
Base.size(F::GivensQ, i::Int) = i > 2 ? 1 : size(F)[i]
Base.copy(F::GivensQ) = GivensQ(copy(F.rotations), F.n, F.m)
Base.adjoint(F::GivensQ) = Adjoint(F)
if !isdefined(LinearAlgebra, :AdjointQ) # VERSION < v"1.10-"
Base.adjoint(F::GivensQ) = Adjoint(F)
end
# NOTE: this also works if rotations is empty (is identity operator)
function LinearAlgebra.lmul!(F::GivensQ, X::AbstractVecOrMat)
m = size(X, 1)
for G in Iterators.reverse(F.rotations) # the adjoint of a GivensQ reverses the order of the rotations
lmul!(G', X) # ... and takes their adjoint
end
return X
end
function LinearAlgebra.lmul!(A::Adjoint{<:Any, <:GivensQ}, X::AbstractVecOrMat)
F = A.parent
function LinearAlgebra.lmul!(A::AdjointQ{<:Any, <:GivensQ}, X::AbstractVecOrMat)
F = parent(A)
for G in F.rotations # the adjoint of a GivensQ reverses the order of the rotations
lmul!(G, X) # ... and takes their adjoint
end
return X
end
LinearAlgebra.rmul!(X::AbstractVecOrMat, F::GivensQ) = lmul!(F', X')'
LinearAlgebra.rmul!(X::AbstractVecOrMat, F::Adjoint{<:Any, <:GivensQ}) = lmul!(F', X')'

lmul(F, X) = lmul!(F, copy(X))
rmul(X, F) = rmul!(copy(X), F)
# disambiguation
LinearAlgebra.lmul!(F::GivensQ, X::LinearAlgebra.AbstractTriangular) = lmul!(F, full!(X))
LinearAlgebra.lmul!(A::AdjointQ{<:Any, <:GivensQ}, X::LinearAlgebra.AbstractTriangular) =
lmul!(F, full!(X))

Base.:*(F::GivensQ, X::AbstractVector) = lmul(F, X)
Base.:*(F::GivensQ, X::AbstractMatrix) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::AbstractVector) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::AbstractMatrix) = lmul(F, X)

Base.:*(X::AbstractMatrix, F::GivensQ) = rmul(X, F)
Base.:*(X::AbstractMatrix, F::Adjoint{<:Any, <:GivensQ}) = rmul(X, F)
LinearAlgebra.rmul!(X::AbstractVecOrMat, F::GivensQ) = lmul!(F', X')'
LinearAlgebra.rmul!(X::AbstractVecOrMat, F::AdjointQ{<:Any, <:GivensQ}) = lmul!(F', X')'
# disambiguation
LinearAlgebra.rmul!(X::LinearAlgebra.AbstractTriangular, F::GivensQ) = lmul!(F', X')'
LinearAlgebra.rmul!(X::LinearAlgebra.AbstractTriangular, F::AdjointQ{<:Any, <:GivensQ}) =
lmul!(F', X')'

function Base.:*(F::GivensQ, G::Adjoint{<:Any, <:GivensQ})
function Base.:*(F::GivensQ, G::AdjointQ{<:Any, <:GivensQ})
T = promote_type(eltype(F), eltype(G))
F === G' ? (one(T) * I)(F.n) : F * Matrix(G)
end
function Base.:*(F::Adjoint{<:Any, <:GivensQ}, G::GivensQ)
function Base.:*(F::AdjointQ{<:Any, <:GivensQ}, G::GivensQ)
T = promote_type(eltype(F), eltype(G))
F' === G ? (one(T) * I)(G.n) : F * Matrix(G)
end

function Base.:(==)(F::GivensQ, G::GivensQ)
F.rotations == G.rotations && F.n == G.n && F.m == G.m
end

LinearAlgebra.ldiv!(F::GivensQ, x::AbstractVector) = lmul!(F', x)
LinearAlgebra.ldiv!(F::Adjoint{<:Any, <:GivensQ}, x::AbstractVector) = lmul!(F', x)
LinearAlgebra.ldiv!(F::GivensQ, X::AbstractMatrix) = lmul!(F', X)
LinearAlgebra.ldiv!(F::Adjoint{<:Any, <:GivensQ}, X::AbstractMatrix) = lmul!(F', X)
if VERSION < v"1.10-"
lmul(F, X) = lmul!(F, copy(X))
rmul(X, F) = rmul!(copy(X), F)

Base.:*(F::GivensQ, X::AbstractVector) = lmul(F, X)
Base.:*(F::GivensQ, X::AbstractMatrix) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::AbstractVector) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::AbstractMatrix) = lmul(F, X)

function LinearAlgebra.mul!(y::AbstractVector, F::GivensQ, x::AbstractVector)
@. y = x
lmul!(F, y)
end
function LinearAlgebra.mul!(Y::AbstractMatrix, F::GivensQ, X::AbstractMatrix)
@. Y = X
lmul!(F, Y)
end
function LinearAlgebra.mul!(y::AbstractVector, F::Adjoint{<:Any, <:GivensQ}, x::AbstractVector)
@. y = x
lmul!(F, y)
end
function LinearAlgebra.mul!(Y::AbstractMatrix, F::Adjoint{<:Any, <:GivensQ}, X::AbstractMatrix)
@. Y = X
lmul!(F, Y)
Base.:*(X::AbstractMatrix, F::GivensQ) = rmul(X, F)
Base.:*(X::AbstractMatrix, F::AdjointQ{<:Any, <:GivensQ}) = rmul(X, F)

Base.:*(F::GivensQ, X::StridedVector) = lmul(F, X)
Base.:*(F::GivensQ, X::StridedMatrix) = lmul(F, X)
Base.:*(F::GivensQ, X::Adjoint{<:Any, <:StridedVecOrMat}) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::StridedVector) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::StridedMatrix) = lmul(F, X)
Base.:*(F::Adjoint{<:Any, <:GivensQ}, X::Adjoint{<:Any, <:StridedVecOrMat}) = lmul(F, X)

Base.:*(X::StridedMatrix, F::GivensQ) = rmul(X, F)
Base.:*(X::StridedMatrix, F::AdjointQ{<:Any, <:GivensQ}) = rmul(X, F)

LinearAlgebra.mul!(Y::StridedVector, F::GivensQ, X::StridedVector) =
invoke(LinearAlgebra.mul!, Tuple{AbstractVector, GivensQ, AbstractVector}, Y, F, X)
LinearAlgebra.mul!(Y::StridedMatrix, F::GivensQ, X::StridedMatrix) =
invoke(LinearAlgebra.mul!, Tuple{AbstractMatrix, GivensQ, AbstractMatrix}, Y, F, X)
LinearAlgebra.mul!(Y::StridedVector, F::AdjointQ{<:Any, <:GivensQ}, X::StridedVector) =
invoke(LinearAlgebra.mul!, Tuple{AbstractVector, AdjointQ{<:Any, <:GivensQ}, AbstractVector}, Y, F, X)
LinearAlgebra.mul!(Y::StridedMatrix, F::AdjointQ{<:Any, <:GivensQ}, X::StridedMatrix) =
invoke(LinearAlgebra.mul!, Tuple{AbstractMatrix, AdjointQ{<:Any, <:GivensQ}, AbstractMatrix}, Y, F, X)

if VERSION < v"1.8-"
Base.:\(F::GivensQ, X::AbstractVector) = F'X
Base.:\(F::GivensQ, X::AbstractMatrix) = F'X
Base.:\(F::Adjoint{<:Any, <:GivensQ}, X::AbstractVector) = F'X
Base.:\(F::Adjoint{<:Any, <:GivensQ}, X::AbstractMatrix) = F'X
end
LinearAlgebra.ldiv!(F::GivensQ, x::AbstractVector) = lmul!(F', x)
LinearAlgebra.ldiv!(F::Adjoint{<:Any, <:GivensQ}, x::AbstractVector) = lmul!(F', x)
LinearAlgebra.ldiv!(F::GivensQ, X::AbstractMatrix) = lmul!(F', X)
LinearAlgebra.ldiv!(F::Adjoint{<:Any, <:GivensQ}, X::AbstractMatrix) = lmul!(F', X)

function LinearAlgebra.mul!(y::AbstractVector, F::GivensQ, x::AbstractVector)
@. y = x
lmul!(F, y)
end
function LinearAlgebra.mul!(Y::AbstractMatrix, F::GivensQ, X::AbstractMatrix)
@. Y = X
lmul!(F, Y)
end
function LinearAlgebra.mul!(y::AbstractVector, F::AdjointQ{<:Any, <:GivensQ}, x::AbstractVector)
@. y = x
lmul!(F, y)
end
function LinearAlgebra.mul!(Y::AbstractMatrix, F::AdjointQ{<:Any, <:GivensQ}, X::AbstractMatrix)
@. Y = X
lmul!(F, Y)
end
end
12 changes: 6 additions & 6 deletions src/updatableQR.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
"""
```

UpdatableGivensQR <: AbstractQR <: Factorization
```

Holds storage for Givens rotations and the R matrix for a QR factorization.
Allows for efficient addition and deletion of columns.
See `add_column!` and `remove_column!`.
Expand Down Expand Up @@ -102,9 +102,9 @@ function LinearAlgebra.ldiv!(F::UQR, x::AbstractVecOrMat)
end

"""
```

add_column!(F::UpdatableGivensQR, x::AbstractVector, k::Int = size(F, 2) + 1)
```

Given an existing QR factorization `F` of a matrix, computes the factorization of
the same matrix after a new column `x` has been added as the `k`ᵗʰ column.
Computational complexity: O(nm) where size(F) = (n, m).
Expand Down Expand Up @@ -195,9 +195,9 @@ function ensure_space_to_append_column!(rotations::AbstractVector{<:Givens},
end

"""
```

remove_column!(F::UpdatableGivensQR, k::Int = size(F, 2))
```

Updates the existing QR factorization `F` of a matrix to the factorization of
the same matrix after its kᵗʰ column has been deleted.
Computational complexity: O(m²) where size(F) = (n, m).
Expand Down
2 changes: 2 additions & 0 deletions test/UpdatableQRFactorizations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -74,9 +74,11 @@ using UpdatableQRFactorizations
x = randn(m)
Ax = A*x
@test F \ (A*x) ≈ x
@test F \ complex(A*x) ≈ x
r = 4
X = randn(m, r)
@test F \ (A*X) ≈ X
@test F \ complex(A*X) ≈ X
end

@testset "UpdatableQR" begin
Expand Down