Skip to content

Commit

Permalink
Adds the score API to LlamaCausalLM (keras-team#1534)
Browse files Browse the repository at this point in the history
  • Loading branch information
RyanMullins authored Mar 29, 2024
1 parent de5cc4a commit e8f75c8
Show file tree
Hide file tree
Showing 2 changed files with 212 additions and 0 deletions.
127 changes: 127 additions & 0 deletions keras_nlp/models/llama/llama_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,3 +212,130 @@ def next(prompt, cache, index):
"token_ids": token_ids,
"padding_mask": padding_mask,
}

def score(
self,
token_ids,
padding_mask=None,
scoring_mode="logits",
layer_intercept_fn=None,
target_ids=None,
):
"""Score a generation represented by the provided token ids.
Args:
token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
to score. Typically, this tensor captures the output from a call
to `LlamaCausalLM.generate()`, i.e., tokens for both the input
text and the model-generated text.
padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
tokens that should be preserved during generation. This is an
artifact required by the `LlamaBackbone` and isn't influential
on the computation of this function. If omitted, this function
uses `keras.ops.ones()` to create a tensor of the appropriate
shape.
scoring_mode: The type of scores to return, either "logits" or
"loss", both will be per input token.
layer_intercept_fn: An optional function for augmenting activations
with additional computation, for example, as part of
interpretability research. This function will be passed the
activations as its first parameter and a numeric index
associated with that backbone layer. _This index _is not_ an
index into `self.backbone.layers`_. The index -1 accompanies the
embeddings returned by calling `self.backbone.token_embedding()`
on `token_ids` in the forward direction. All subsequent indexes
will be 0-based indices for the activations returned by each of
the Transformers layers in the backbone. This function must
return a <float>[batch_size, num_tokens, hidden_dims] tensor
that can be passed as an input to the next layer in the model.
target_ids: An <bool>[batch_size, num_tokens] tensor containing the
predicted tokens against which the loss should be computed. If a
span of tokens is provided (sequential truthy values along
axis=1 in the tensor), the loss will be computed as the
aggregate across those tokens.
Raises:
ValueError: If an unsupported scoring_mode is provided, or if the
target_ids are not provided when using ScoringMode.LOSS.
Returns:
The per-token scores as a tensor of size
<float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
<float>[batch_size, num_tokens] in "loss" mode.
Example:
Compute gradients between embeddings and loss scores with TensorFlow:
```python
llama_lm = keras_nlp.models.LlamaCausalLM.from_preset("llama2_7b_en")
generations = llama_lm.generate(
["This is a", "Where are you"],
max_length=30
)
preprocessed = llama_lm.preprocessor.generate_preprocess(generations)
generation_ids = preprocessed["token_ids"]
padding_mask = preprocessed["padding_mask"]
target_ids = keras.ops.roll(generation_ids, shift=-1, axis=1)
embeddings = None
with tf.GradientTape(watch_accessed_variables=True) as tape:
def layer_intercept_fn(x, i):
if i == -1:
nonlocal embeddings, tape
embeddings = x
tape.watch(embeddings)
return x
losses = llama_lm.score(
token_ids=generation_ids,
padding_mask=padding_mask,
scoring_mode="loss",
layer_intercept_fn=layer_intercept_fn,
target_ids=target_ids,
)
grads = tape.gradient(losses, embeddings)
```
"""
if scoring_mode not in ("logits", "loss"):
raise ValueError(
"Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
)

if scoring_mode == "loss" and target_ids is None:
raise ValueError(
"Cannot compute loss without targets. Please provide target "
"token ids via the target_ids parameter."
)

batch_shape = ops.shape(token_ids)[:2]
assert len(batch_shape) == 2

if padding_mask is None:
padding_mask = ops.ones(shape=batch_shape)

if layer_intercept_fn is None:

def default_layer_intercept_fn(x, unused_i):
return x

layer_intercept_fn = default_layer_intercept_fn

token_embeddings = self.backbone.token_embedding(token_ids)
x = layer_intercept_fn(token_embeddings, -1)

for i, transformer_layer in enumerate(self.backbone.transformer_layers):
x = transformer_layer(x, decoder_padding_mask=padding_mask)
x = layer_intercept_fn(x, i)

x = self.backbone.layer_norm(x)
logits = self.backbone.token_embedding(x, reverse=True)

if scoring_mode == "logits":
return logits

per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="none"
)
per_token_loss = per_token_loss_fn(target_ids, logits)
return per_token_loss
85 changes: 85 additions & 0 deletions keras_nlp/models/llama/llama_causal_lm_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,3 +128,88 @@ def test_all_presets(self):
preset=preset,
input_data=self.input_data,
)

def test_score_logits(self):
# Setup prompts, models, and associated expected shapes.
prompts = ["the quick brown fox", "the quick brown fox"]
causal_lm = LlamaCausalLM(**self.init_kwargs)
expected_score_shape = (2, 8, 10)

# Preprocess prompts to get tokenized representations and padding masks.
preprocessed_prompts = causal_lm.preprocessor.generate_preprocess(
prompts
)
token_ids = preprocessed_prompts["token_ids"]
padding_mask = preprocessed_prompts["padding_mask"]

# Get the scores and assert their shape.
scores = causal_lm.score(
token_ids=token_ids,
padding_mask=padding_mask,
scoring_mode="logits",
)

self.assertEqual(ops.shape(scores), expected_score_shape)

def test_score_loss(self):
# Setup prompts, models, and associated expected shapes.
prompts = ["the quick brown fox", "the quick brown fox"]
causal_lm = LlamaCausalLM(**self.init_kwargs)
expected_score_shape = (2, 8)

# Preprocess prompts to get tokenized representations and padding masks.
preprocessed_prompts = causal_lm.preprocessor.generate_preprocess(
prompts
)
token_ids = preprocessed_prompts["token_ids"]
padding_mask = preprocessed_prompts["padding_mask"]
target_ids = ops.roll(token_ids, shift=-1, axis=1)

# Get the scores and assert their shape.
scores = causal_lm.score(
token_ids=token_ids,
padding_mask=padding_mask,
scoring_mode="loss",
target_ids=target_ids,
)

self.assertEqual(ops.shape(scores), expected_score_shape)

def test_score_layer_intercept_fn_exfiltration(self):
# Setup prompts, models, and associated expected shapes.
prompts = ["the quick brown fox", "the quick brown fox"]
causal_lm = LlamaCausalLM(**self.init_kwargs)
expected_embedded_shape = (2, 8, 8)
expected_score_shape = (2, 8, 10)

# Preprocess prompts to get tokenized representations and padding masks.
preprocessed_prompts = causal_lm.preprocessor.generate_preprocess(
prompts
)
token_ids = preprocessed_prompts["token_ids"]
padding_mask = preprocessed_prompts["padding_mask"]

# Setup a custom intercept function that extracts the embeddings to a
# a variable from the embeddings layer and otherwise asserts on shapes.
embedded_prompts = None

def layer_intercept_fn_for_testing(x, i):
if i == -1:
nonlocal embedded_prompts
embedded_prompts = x
else:
nonlocal expected_embedded_shape
self.assertEqual(ops.shape(x), expected_embedded_shape)
return x

# Get the scores.
scores = causal_lm.score(
token_ids=token_ids,
padding_mask=padding_mask,
scoring_mode="logits",
layer_intercept_fn=layer_intercept_fn_for_testing,
)

# Assert shapes for info exfiltrated into the parent context.
self.assertEqual(ops.shape(embedded_prompts), expected_embedded_shape)
self.assertEqual(ops.shape(scores), expected_score_shape)

0 comments on commit e8f75c8

Please sign in to comment.