Skip to content

This repository is the official implementation of Online Influence Maximization under Linear Threshold Model.

Notifications You must be signed in to change notification settings

Ritchiegit/Online_Influence_Maximization_under_Linear_Threshold_Model

Repository files navigation

Online Influence Maximization under Linear Threshold Model

This repository is the official implementation of Online Influence Maximization under Linear Threshold Model.

Requirements

To install requirements:

step 1

conda install --yes --file requirements.txt

step 2 (If you want to generate the ER graph.)

pip install python-igraph=0.8.0

Run Our Algorithm

To run the algorithm in the paper, run this command:

python Main.py --is_bipartite --seed_size 5 --iterationTimes 22000 --save_address <path_to_save> --G_address <path_to_graph> --weight_address <path_to_weight>

You can reproduce the four examples in the paper.

python Main.py --seed_size 3 --iterationTimes 11000 --save_address SimulationResults/gaussian_9_ER --G_address Datasets/ER_node9_p_0.2.G --weight_address Datasets/ER_node9_p_0.2EWTrue.dic
python Main.py --seed_size 3 --iterationTimes 6000 --save_address SimulationResults/gaussian_12_ER --G_address Datasets//ER_node12_p_0.2.G --weight_address Datasets/ER_node12_p_0.2EWTrue.dic
python Main.py --is_bipartite --seed_size 3 --iterationTimes 30000 --save_address SimulationResults/BinarySelect2_2010_2d --G_address Datasets//DIY_Binary_RandomSelect2_20_10.G --weight_address Datasets/DIY_Binary_RandomSelect2_20_10EWTrue.dic
python Main.py --is_bipartite --seed_size 5 --iterationTimes 22000 --save_address SimulationResults/BinarySelect2_100100_2d --G_address Datasets//DIY_Binary_RandomSelect2_100_100.G --weight_address Datasets/DIY_Binary_RandomSelect2_100_100EWTrue.dic

Results

To evaluate my model, we draw the average reward of algs.

About

This repository is the official implementation of Online Influence Maximization under Linear Threshold Model.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages