Skip to content
/ GMRES Public

A sparse linear system solver using the GMRES iterative method

License

Notifications You must be signed in to change notification settings

RLado/GMRES

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GMRES: Generalized minimum residual method

A sparse linear system solver using the GMRES iterative method.

GitHub Workflow Status Crates.io Crates.io


This crates provides a solver for Ax=b linear problems using the GMRES method. Sparse matrices are a common representation for many real-world problems commonly found in engineering and scientific applications. This implementation of the GMRES method is specifically tailored to sparse matrices, making it an efficient and effective tool for solving large linear systems arising from real-world problems.

Example:

Solve a linear system

use gmres;
use rsparse::data::Sprs;

fn main() {
    // Define an arbitrary matrix `A`
    let a = Sprs::new_from_vec(&[
        vec![0.888641, 0.477151, 0.764081, 0.244348, 0.662542],
        vec![0.695741, 0.991383, 0.800932, 0.089616, 0.250400],
        vec![0.149974, 0.584978, 0.937576, 0.870798, 0.990016],
        vec![0.429292, 0.459984, 0.056629, 0.567589, 0.048561],
        vec![0.454428, 0.253192, 0.173598, 0.321640, 0.632031],
    ]);

    // Define a vector `b`
    let b = vec![0.104594, 0.437549, 0.040264, 0.298842, 0.254451];

    // Provide an initial guess
    let mut x = vec![0.; b.len()];

    // Solve for `x`
    gmres::gmres(&a, &b, &mut x, 100, 1e-5).unwrap();

    // Check if the result is correct
    gmres::test_utils::assert_eq_f_vec(
        &x,
        &vec![0.037919, 0.888551, -0.657575, -0.181680, 0.292447],
        1e-5,
    );
}

About

A sparse linear system solver using the GMRES iterative method

Topics

Resources

License

Stars

Watchers

Forks

Languages