forked from matplotlib/matplotlib
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request matplotlib#29407 from timhoffm/doc-log-scale
DOC: Improve log scale example
- Loading branch information
Showing
2 changed files
with
65 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,47 +1,83 @@ | ||
""" | ||
======== | ||
Log Demo | ||
======== | ||
========= | ||
Log scale | ||
========= | ||
Examples of plots with logarithmic axes. | ||
You can set the x/y axes to be logarithmic by passing "log" to `~.Axes.set_xscale` / | ||
`~.Axes.set_yscale`. | ||
Convenience functions ``semilogx``, ``semilogy``, and ``loglog`` | ||
---------------------------------------------------------------- | ||
Since plotting data on semi-logarithmic or double-logarithmic scales is very common, | ||
the functions `~.Axes.semilogx`, `~.Axes.semilogy`, and `~.Axes.loglog` are shortcuts | ||
for setting the scale and plotting data; e.g. ``ax.semilogx(x, y)`` is equivalent to | ||
``ax.set_xscale('log'); ax.plot(x, y)``. | ||
""" | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
# Data for plotting | ||
t = np.arange(0.01, 20.0, 0.01) | ||
|
||
# Create figure | ||
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) | ||
|
||
# log y axis | ||
ax1.semilogy(t, np.exp(-t / 5.0)) | ||
ax1.set(title='semilogy') | ||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, layout='constrained', figsize=(7, 7/3)) | ||
# log x axis | ||
t = np.arange(0.01, 10.0, 0.01) | ||
ax1.semilogx(t, np.sin(2 * np.pi * t)) | ||
ax1.set(title='semilogx') | ||
ax1.grid() | ||
ax1.grid(which="minor", color="0.9") | ||
|
||
# log x axis | ||
ax2.semilogx(t, np.sin(2 * np.pi * t)) | ||
ax2.set(title='semilogx') | ||
# log y axis | ||
x = np.arange(4) | ||
ax2.semilogy(4*x, 10**x, 'o--') | ||
ax2.set(title='semilogy') | ||
ax2.grid() | ||
ax2.grid(which="minor", color="0.9") | ||
|
||
# log x and y axis | ||
ax3.loglog(t, 20 * np.exp(-t / 10.0)) | ||
ax3.set_xscale('log', base=2) | ||
ax3.set(title='loglog base 2 on x') | ||
x = np.array([1, 10, 100, 1000]) | ||
ax3.loglog(x, 5 * x, 'o--') | ||
ax3.set(title='loglog') | ||
ax3.grid() | ||
ax3.grid(which="minor", color="0.9") | ||
|
||
# %% | ||
# Logarithms with other bases | ||
# --------------------------- | ||
# By default, the log scale is to the base 10. One can change this via the *base* | ||
# parameter. | ||
fig, ax = plt.subplots() | ||
ax.bar(["L1 cache", "L2 cache", "L3 cache", "RAM", "SSD"], | ||
[32, 1_000, 32_000, 16_000_000, 512_000_000]) | ||
ax.set_yscale('log', base=2) | ||
ax.set_yticks([1, 2**10, 2**20, 2**30], labels=['kB', 'MB', 'GB', 'TB']) | ||
ax.set_title("Typical memory sizes") | ||
ax.yaxis.grid() | ||
|
||
# %% | ||
# Dealing with negative values | ||
# ---------------------------- | ||
# Non-positive values cannot be displayed on a log scale. The scale has two options | ||
# to handle these. Either mask the values so that they are ignored, or clip them | ||
# to a small positive value. Which one is more suited depends on the type of the | ||
# data and the visualization. | ||
# | ||
# The following example contains errorbars going negative. If we mask these values, | ||
# the bar vanishes, which is not desirable. In contrast, clipping makes the value | ||
# small positive (but well below the used scale) so that the error bar is drawn | ||
# to the edge of the Axes. | ||
x = np.linspace(0.0, 2.0, 10) | ||
y = 10**x | ||
yerr = 1.75 + 0.75*y | ||
|
||
# With errorbars: clip non-positive values | ||
# Use new data for plotting | ||
x = 10.0**np.linspace(0.0, 2.0, 20) | ||
y = x**2.0 | ||
fig, (ax1, ax2) = plt.subplots(1, 2, layout="constrained", figsize=(6, 3)) | ||
fig.suptitle("errorbars going negative") | ||
ax1.set_yscale("log", nonpositive='mask') | ||
ax1.set_title('nonpositive="mask"') | ||
ax1.errorbar(x, y, yerr=yerr, fmt='o', capsize=5) | ||
|
||
ax4.set_xscale("log", nonpositive='clip') | ||
ax4.set_yscale("log", nonpositive='clip') | ||
ax4.set(title='Errorbars go negative') | ||
ax4.errorbar(x, y, xerr=0.1 * x, yerr=5.0 + 0.75 * y) | ||
# ylim must be set after errorbar to allow errorbar to autoscale limits | ||
ax4.set_ylim(bottom=0.1) | ||
ax2.set_yscale("log", nonpositive='clip') | ||
ax2.set_title('nonpositive="clip"') | ||
ax2.errorbar(x, y, yerr=yerr, fmt='o', capsize=5) | ||
|
||
fig.tight_layout() | ||
plt.show() |
This file was deleted.
Oops, something went wrong.