This repo record and lable audio data by UMA8 and Respeaker mic array
A clean template to kickstart your deep learning project 🚀⚡🔥
Click on Use this template to initialize new repository.
Suggestions are always welcome!
PyTorch Lightning - a lightweight PyTorch wrapper for high-performance AI research. Think of it as a framework for organizing your PyTorch code.
Hydra - a framework for elegantly configuring complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line.
The directory structure of new project looks like this:
├── .devcontainer <- Github Actions workflows
│
├── configs <- Hydra configs
│ ├── callbacks <- Callbacks configs
│ ├── data <- Data configs
│ ├── debug <- Debugging configs
│ ├── experiment <- Experiment configs
│ ├── extras <- Extra utilities configs
│ ├── hparams_search <- Hyperparameter search configs
│ ├── hydra <- Hydra configs
│ ├── local <- Local configs
│ ├── logger <- Logger configs
│ ├── model <- Model configs
│ ├── paths <- Project paths configs
│ ├── trainer <- Trainer configs
│ │
│ ├── eval.yaml <- Main config for evaluation
│ └── train.yaml <- Main config for training
│
├── data <- Project data
│
├── logs <- Logs generated by hydra and lightning loggers
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description,
│ e.g. `1.0-jqp-initial-data-exploration.ipynb`.
│
├── scripts <- Shell scripts
│
├── AudioDataSet <- Source code
│ ├── callbacks <- Callbacks configs
│ ├── configs <- configs
│ ├── data <- Data scripts
│ ├── datamodule <- Datmodules
│ ├── models <- Model scripts
│ ├── utils <- Utility scripts
│ │
│ ├── eval.py <- Run evaluation
│ └── train.py <- Run training
│
├── tests <- Tests of any kind
│
├── .gitignore <- List of files ignored by git
├── .gitmodules <- List of submodules by git
├── .project-root <- File for inferring the position of project root directory
├── pyproject.toml <- Configuration options for testing and linting
├── requirements.txt <- File for installing python dependencies
└── README.md
# clone project
git clone https://github.com/ashleve/lightning-hydra-template
cd lightning-hydra-template
# [OPTIONAL] create conda environment
conda create -n myenv python=3.9
conda activate myenv
# install pytorch according to instructions
# https://pytorch.org/get-started/
# install requirements
pip install -r requirements.txt
@misc{ ,
title={AudioLC: },
author={Paria Vali Zadeh},
year={202.},
eprint={},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/},
}