Skip to content

Commit

Permalink
Support serving vehicle attribute recognition pipeline (#2452)
Browse files Browse the repository at this point in the history
  • Loading branch information
zhangyubo0722 authored Nov 11, 2024
1 parent 0160aa3 commit 3e61261
Show file tree
Hide file tree
Showing 2 changed files with 113 additions and 1 deletion.
14 changes: 13 additions & 1 deletion paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,10 @@

from fastapi import FastAPI

from ...attribute_recognition import PedestrianAttributeRecPipeline
from ...attribute_recognition import (
PedestrianAttributeRecPipeline,
VehicleAttributeRecPipeline,
)
from ...base import BasePipeline
from ...formula_recognition import FormulaRecognitionPipeline
from ...layout_parsing import LayoutParsingPipeline
Expand Down Expand Up @@ -52,6 +55,9 @@
from .pedestrian_attribute_recognition import (
create_pipeline_app as create_pedestrian_attribute_recognition_app,
)
from .vehicle_attribute_recognition import (
create_pipeline_app as create_vehicle_attribute_recognition_app,
)
from .ppchatocrv3 import create_pipeline_app as create_ppchatocrv3_app
from .seal_recognition import create_pipeline_app as create_seal_recognition_app
from .semantic_segmentation import (
Expand Down Expand Up @@ -168,6 +174,12 @@ def create_pipeline_app(
"Expected `pipeline` to be an instance of `PedestrianAttributeRecPipeline`."
)
return create_pedestrian_attribute_recognition_app(pipeline, app_config)
elif pipeline_name == "vehicle_attribute_recognition":
if not isinstance(pipeline, VehicleAttributeRecPipeline):
raise TypeError(
"Expected `pipeline` to be an instance of `VehicleAttributeRecPipeline`."
)
return create_vehicle_attribute_recognition_app(pipeline, app_config)
else:
if BasePipeline.get(pipeline_name):
raise ValueError(
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, Field
from typing_extensions import Annotated, TypeAlias

from .....utils import logging
from ...attribute_recognition import VehicleAttributeRecPipeline
from .. import utils as serving_utils
from ..app import AppConfig, create_app
from ..models import Response, ResultResponse


class InferRequest(BaseModel):
image: str


BoundingBox: TypeAlias = Annotated[List[float], Field(min_length=4, max_length=4)]


class Attribute(BaseModel):
label: str
score: float


class Vehicle(BaseModel):
bbox: BoundingBox
attributes: List[Attribute]
score: float


class InferResult(BaseModel):
vehicles: List[Vehicle]
image: str


def create_pipeline_app(
pipeline: VehicleAttributeRecPipeline, app_config: AppConfig
) -> FastAPI:
app, ctx = create_app(
pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
)

@app.post(
"/vehicle-attribute-recognition",
operation_id="infer",
responses={422: {"model": Response}},
)
async def _infer(request: InferRequest) -> ResultResponse[InferResult]:
pipeline = ctx.pipeline
aiohttp_session = ctx.aiohttp_session

try:
file_bytes = await serving_utils.get_raw_bytes(
request.image, aiohttp_session
)
image = serving_utils.image_bytes_to_array(file_bytes)

result = (await pipeline.infer(image))[0]

vehicles: List[Vehicle] = []
for obj in result["boxes"]:
vehicles.append(
Vehicle(
bbox=obj["coordinate"],
attributes=[
Attribute(label=l, score=s)
for l, s in zip(obj["labels"], obj["cls_scores"])
],
score=obj["det_score"],
)
)
output_image_base64 = serving_utils.image_to_base64(result.img)

return ResultResponse(
logId=serving_utils.generate_log_id(),
errorCode=0,
errorMsg="Success",
result=InferResult(vehicles=vehicles, image=output_image_base64),
)

except Exception as e:
logging.exception(e)
raise HTTPException(status_code=500, detail="Internal server error")

return app

0 comments on commit 3e61261

Please sign in to comment.