Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【hydra No.3】Adapt VIV to hydra #622

Merged
merged 3 commits into from
Nov 3, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 27 additions & 20 deletions docs/zh/examples/viv.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,13 @@

![VIV_1D_SpringDamper](https://paddle-org.bj.bcebos.com/paddlescience/docs/ViV/VIV_1D_SpringDamper.png)


=== "模型训练命令"

``` sh
python viv.py
```

GreatV marked this conversation as resolved.
Show resolved Hide resolved
## 2. 问题定义

本问题涉及的控制方程涉及三个物理量:$λ_1$、$λ_2$ 和 $ρ$,分别表示自然阻尼、结构特性刚度和质量,控制方程定义如下所示:
Expand All @@ -41,9 +48,9 @@ $$

上式中 $g$ 即为 MLP 模型本身,用 PaddleScience 代码表示如下

``` py linenums="28"
``` py linenums="31"
--8<--
examples/fsi/viv.py:28:29
examples/fsi/viv.py:31:32
--8<--
```

Expand All @@ -56,9 +63,9 @@ examples/fsi/viv.py:28:29

由于 VIV 使用的是 VIV 方程,因此可以直接使用 PaddleScience 内置的 `VIV`。

``` py linenums="31"
``` py linenums="34"
--8<--
examples/fsi/viv.py:31:32
examples/fsi/viv.py:34:35
--8<--
```

Expand All @@ -76,19 +83,19 @@ examples/fsi/viv.py:31:32

在定义约束之前,需要给监督约束指定文件路径等数据读取配置。

``` py linenums="34"
``` py linenums="37"
--8<--
examples/fsi/viv.py:34:50
examples/fsi/viv.py:37:52
--8<--
```

#### 3.4.1 监督约束

由于我们以监督学习方式进行训练,此处采用监督约束 `SupervisedConstraint`:

``` py linenums="51"
``` py linenums="54"
--8<--
examples/fsi/viv.py:51:57
examples/fsi/viv.py:54:60
--8<--
```

Expand All @@ -102,29 +109,29 @@ examples/fsi/viv.py:51:57

在监督约束构建完毕之后,以我们刚才的命名为关键字,封装到一个字典中,方便后续访问。

``` py linenums="58"
``` py linenums="61"
--8<--
examples/fsi/viv.py:58:61
examples/fsi/viv.py:61:64
--8<--
```

### 3.5 超参数设定

接下来我们需要指定训练轮数和学习率,此处我们按实验经验,使用十万轮训练轮数,并每隔1000个epochs评估一次模型精度。

``` py linenums="63"
``` yaml linenums="40"
--8<--
examples/fsi/viv.py:63:65
examples/fsi/conf/viv.yaml:40:45
--8<--
```
GreatV marked this conversation as resolved.
Show resolved Hide resolved

### 3.6 优化器构建

训练过程会调用优化器来更新模型参数,此处选择较为常用的 `Adam` 优化器和 `Step` 间隔衰减学习率。

``` py linenums="67"
``` py linenums="66"
--8<--
examples/fsi/viv.py:67:71
examples/fsi/viv.py:66:68
--8<--
```

Expand All @@ -136,9 +143,9 @@ examples/fsi/viv.py:67:71

在训练过程中通常会按一定轮数间隔,用验证集(测试集)评估当前模型的训练情况,因此使用 `ppsci.validate.SupervisedValidator` 构建评估器。

``` py linenums="73"
``` py linenums="70"
--8<--
examples/fsi/viv.py:73:95
examples/fsi/viv.py:70:92
--8<--
```

Expand All @@ -152,19 +159,19 @@ examples/fsi/viv.py:73:95

本文需要可视化的数据是 $t-\eta$ 和 $t-f$ 两组关系图,假设每个时刻 $t$ 的坐标是 $t_i$,则对应网络输出为 $\eta_i$,升力为 $f_i$,因此我们只需要将评估过程中产生的所有 $(t_i, \eta_i, f_i)$ 保存成图片即可。代码如下:

``` py linenums="97"
``` py linenums="94"
--8<--
examples/fsi/viv.py:97:116
examples/fsi/viv.py:94:113
--8<--
```

### 3.9 模型训练、评估与可视化

完成上述设置之后,只需要将上述实例化的对象按顺序传递给 `ppsci.solver.Solver`,然后启动训练、评估、可视化。

``` py linenums="118"
``` py linenums="115"
--8<--
examples/fsi/viv.py:118:
examples/fsi/viv.py:115:136
--8<--
```

Expand Down
58 changes: 58 additions & 0 deletions examples/fsi/conf/viv.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
hydra:
run:
# dynamic output directory according to running time and override name
dir: outputs_VIV/${now:%Y-%m-%d}/${now:%H-%M-%S}/${hydra.job.override_dirname}
job:
name: ${mode} # name of logfile
chdir: false # keep current working direcotry unchaned
config:
override_dirname:
exclude_keys:
- TRAIN.checkpoint_path
- TRAIN.pretrained_model_path
- EVAL.pretrained_model_path
- mode
- output_dir
- log_freq
sweep:
# output directory for multirun
dir: ${hydra.run.dir}
subdir: ./

# general settings
mode: train # running mode: train/eval
seed: 42
output_dir: ${hydra:run.dir}
log_freq: 20

VIV_DATA_PATH: "./VIV_Training_Neta100.mat"

# model settings
MODEL:
input_keys: ["t_f"]
output_keys: ["eta"]
num_layers: 5
hidden_size: 50
activation: "tanh"

# training settings
TRAIN:
epochs: 100000
iters_per_epoch: 1
GreatV marked this conversation as resolved.
Show resolved Hide resolved
save_freq: 1
eval_during_train: true
eval_freq: 1000
batch_size: 100
lr_scheduler:
epochs: ${TRAIN.epochs}
iters_per_epoch: ${TRAIN.iters_per_epoch}
learning_rate: 0.001
step_size: 20000
gamma: 0.9
pretrained_model_path: null
checkpoint_path: null

# evaluation settings
EVAL:
pretrained_model_path: null
batch_size: 32
Loading