-
Notifications
You must be signed in to change notification settings - Fork 7.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support export after save model (#13844)
- Loading branch information
1 parent
3cc4ae9
commit 2b51369
Showing
5 changed files
with
528 additions
and
321 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,381 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import yaml | ||
import json | ||
import copy | ||
import paddle | ||
import paddle.nn as nn | ||
from paddle.jit import to_static | ||
|
||
from collections import OrderedDict | ||
from argparse import ArgumentParser, RawDescriptionHelpFormatter | ||
from ppocr.modeling.architectures import build_model | ||
from ppocr.postprocess import build_post_process | ||
from ppocr.utils.save_load import load_model | ||
from ppocr.utils.logging import get_logger | ||
|
||
|
||
def represent_dictionary_order(self, dict_data): | ||
return self.represent_mapping("tag:yaml.org,2002:map", dict_data.items()) | ||
|
||
|
||
def setup_orderdict(): | ||
yaml.add_representer(OrderedDict, represent_dictionary_order) | ||
|
||
|
||
def dump_infer_config(config, path, logger): | ||
setup_orderdict() | ||
infer_cfg = OrderedDict() | ||
if config["Global"].get("hpi_config_path", None): | ||
hpi_config = yaml.safe_load(open(config["Global"]["hpi_config_path"], "r")) | ||
rec_resize_img_dict = next( | ||
( | ||
item | ||
for item in config["Eval"]["dataset"]["transforms"] | ||
if "RecResizeImg" in item | ||
), | ||
None, | ||
) | ||
if rec_resize_img_dict: | ||
dynamic_shapes = [1] + rec_resize_img_dict["RecResizeImg"]["image_shape"] | ||
if hpi_config["Hpi"]["backend_config"].get("paddle_tensorrt", None): | ||
hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][ | ||
"dynamic_shapes" | ||
]["x"] = [dynamic_shapes for i in range(3)] | ||
hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][ | ||
"max_batch_size" | ||
] = 1 | ||
if hpi_config["Hpi"]["backend_config"].get("tensorrt", None): | ||
hpi_config["Hpi"]["backend_config"]["tensorrt"]["dynamic_shapes"][ | ||
"x" | ||
] = [dynamic_shapes for i in range(3)] | ||
hpi_config["Hpi"]["backend_config"]["tensorrt"]["max_batch_size"] = 1 | ||
else: | ||
if hpi_config["Hpi"]["backend_config"].get("paddle_tensorrt", None): | ||
hpi_config["Hpi"]["supported_backends"]["gpu"].remove("paddle_tensorrt") | ||
del hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"] | ||
if hpi_config["Hpi"]["backend_config"].get("tensorrt", None): | ||
hpi_config["Hpi"]["supported_backends"]["gpu"].remove("tensorrt") | ||
del hpi_config["Hpi"]["backend_config"]["tensorrt"] | ||
infer_cfg["Hpi"] = hpi_config["Hpi"] | ||
if config["Global"].get("pdx_model_name", None): | ||
infer_cfg["Global"] = {} | ||
infer_cfg["Global"]["model_name"] = config["Global"]["pdx_model_name"] | ||
|
||
infer_cfg["PreProcess"] = {"transform_ops": config["Eval"]["dataset"]["transforms"]} | ||
postprocess = OrderedDict() | ||
for k, v in config["PostProcess"].items(): | ||
postprocess[k] = v | ||
|
||
if config["Architecture"].get("algorithm") in ["LaTeXOCR"]: | ||
tokenizer_file = config["Global"].get("rec_char_dict_path") | ||
if tokenizer_file is not None: | ||
with open(tokenizer_file, encoding="utf-8") as tokenizer_config_handle: | ||
character_dict = json.load(tokenizer_config_handle) | ||
postprocess["character_dict"] = character_dict | ||
else: | ||
if config["Global"].get("character_dict_path") is not None: | ||
with open(config["Global"]["character_dict_path"], encoding="utf-8") as f: | ||
lines = f.readlines() | ||
character_dict = [line.strip("\n") for line in lines] | ||
postprocess["character_dict"] = character_dict | ||
|
||
infer_cfg["PostProcess"] = postprocess | ||
|
||
with open(path, "w") as f: | ||
yaml.dump( | ||
infer_cfg, f, default_flow_style=False, encoding="utf-8", allow_unicode=True | ||
) | ||
logger.info("Export inference config file to {}".format(os.path.join(path))) | ||
|
||
|
||
def export_single_model( | ||
model, arch_config, save_path, logger, input_shape=None, quanter=None | ||
): | ||
if arch_config["algorithm"] == "SRN": | ||
max_text_length = arch_config["Head"]["max_text_length"] | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 1, 64, 256], dtype="float32"), | ||
[ | ||
paddle.static.InputSpec(shape=[None, 256, 1], dtype="int64"), | ||
paddle.static.InputSpec( | ||
shape=[None, max_text_length, 1], dtype="int64" | ||
), | ||
paddle.static.InputSpec( | ||
shape=[None, 8, max_text_length, max_text_length], dtype="int64" | ||
), | ||
paddle.static.InputSpec( | ||
shape=[None, 8, max_text_length, max_text_length], dtype="int64" | ||
), | ||
], | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "SAR": | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 48, 160], dtype="float32"), | ||
[paddle.static.InputSpec(shape=[None], dtype="float32")], | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] in ["SVTR_LCNet", "SVTR_HGNet"]: | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 48, -1], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] in ["SVTR", "CPPD"]: | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None] + input_shape, dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "PREN": | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 64, 256], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["model_type"] == "sr": | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 16, 64], dtype="float32") | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "ViTSTR": | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 1, 224, 224], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "ABINet": | ||
if not input_shape: | ||
input_shape = [3, 32, 128] | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None] + input_shape, dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] in ["NRTR", "SPIN", "RFL"]: | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 1, 32, 100], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] in ["SATRN"]: | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 32, 100], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "VisionLAN": | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 64, 256], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "RobustScanner": | ||
max_text_length = arch_config["Head"]["max_text_length"] | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 3, 48, 160], dtype="float32"), | ||
[ | ||
paddle.static.InputSpec( | ||
shape=[ | ||
None, | ||
], | ||
dtype="float32", | ||
), | ||
paddle.static.InputSpec(shape=[None, max_text_length], dtype="int64"), | ||
], | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "CAN": | ||
other_shape = [ | ||
[ | ||
paddle.static.InputSpec(shape=[None, 1, None, None], dtype="float32"), | ||
paddle.static.InputSpec(shape=[None, 1, None, None], dtype="float32"), | ||
paddle.static.InputSpec( | ||
shape=[None, arch_config["Head"]["max_text_length"]], dtype="int64" | ||
), | ||
] | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] == "LaTeXOCR": | ||
other_shape = [ | ||
paddle.static.InputSpec(shape=[None, 1, None, None], dtype="float32"), | ||
] | ||
model = to_static(model, input_spec=other_shape) | ||
elif arch_config["algorithm"] in ["LayoutLM", "LayoutLMv2", "LayoutXLM"]: | ||
input_spec = [ | ||
paddle.static.InputSpec(shape=[None, 512], dtype="int64"), # input_ids | ||
paddle.static.InputSpec(shape=[None, 512, 4], dtype="int64"), # bbox | ||
paddle.static.InputSpec(shape=[None, 512], dtype="int64"), # attention_mask | ||
paddle.static.InputSpec(shape=[None, 512], dtype="int64"), # token_type_ids | ||
paddle.static.InputSpec(shape=[None, 3, 224, 224], dtype="int64"), # image | ||
] | ||
if "Re" in arch_config["Backbone"]["name"]: | ||
input_spec.extend( | ||
[ | ||
paddle.static.InputSpec( | ||
shape=[None, 512, 3], dtype="int64" | ||
), # entities | ||
paddle.static.InputSpec( | ||
shape=[None, None, 2], dtype="int64" | ||
), # relations | ||
] | ||
) | ||
if model.backbone.use_visual_backbone is False: | ||
input_spec.pop(4) | ||
model = to_static(model, input_spec=[input_spec]) | ||
else: | ||
infer_shape = [3, -1, -1] | ||
if arch_config["model_type"] == "rec": | ||
infer_shape = [3, 32, -1] # for rec model, H must be 32 | ||
if ( | ||
"Transform" in arch_config | ||
and arch_config["Transform"] is not None | ||
and arch_config["Transform"]["name"] == "TPS" | ||
): | ||
logger.info( | ||
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training" | ||
) | ||
infer_shape[-1] = 100 | ||
elif arch_config["model_type"] == "table": | ||
infer_shape = [3, 488, 488] | ||
if arch_config["algorithm"] == "TableMaster": | ||
infer_shape = [3, 480, 480] | ||
if arch_config["algorithm"] == "SLANet": | ||
infer_shape = [3, -1, -1] | ||
model = to_static( | ||
model, | ||
input_spec=[ | ||
paddle.static.InputSpec(shape=[None] + infer_shape, dtype="float32") | ||
], | ||
) | ||
|
||
if ( | ||
arch_config["model_type"] != "sr" | ||
and arch_config["Backbone"]["name"] == "PPLCNetV3" | ||
): | ||
# for rep lcnetv3 | ||
for layer in model.sublayers(): | ||
if hasattr(layer, "rep") and not getattr(layer, "is_repped"): | ||
layer.rep() | ||
|
||
if quanter is None: | ||
paddle.jit.save(model, save_path) | ||
else: | ||
quanter.save_quantized_model(model, save_path) | ||
logger.info("inference model is saved to {}".format(save_path)) | ||
return | ||
|
||
|
||
def export(config, base_model=None, save_path=None): | ||
if paddle.distributed.get_rank() != 0: | ||
return | ||
logger = get_logger() | ||
# build post process | ||
post_process_class = build_post_process(config["PostProcess"], config["Global"]) | ||
|
||
# build model | ||
# for rec algorithm | ||
if hasattr(post_process_class, "character"): | ||
char_num = len(getattr(post_process_class, "character")) | ||
if config["Architecture"]["algorithm"] in [ | ||
"Distillation", | ||
]: # distillation model | ||
for key in config["Architecture"]["Models"]: | ||
if ( | ||
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead" | ||
): # multi head | ||
out_channels_list = {} | ||
if config["PostProcess"]["name"] == "DistillationSARLabelDecode": | ||
char_num = char_num - 2 | ||
if config["PostProcess"]["name"] == "DistillationNRTRLabelDecode": | ||
char_num = char_num - 3 | ||
out_channels_list["CTCLabelDecode"] = char_num | ||
out_channels_list["SARLabelDecode"] = char_num + 2 | ||
out_channels_list["NRTRLabelDecode"] = char_num + 3 | ||
config["Architecture"]["Models"][key]["Head"][ | ||
"out_channels_list" | ||
] = out_channels_list | ||
else: | ||
config["Architecture"]["Models"][key]["Head"][ | ||
"out_channels" | ||
] = char_num | ||
# just one final tensor needs to exported for inference | ||
config["Architecture"]["Models"][key]["return_all_feats"] = False | ||
elif config["Architecture"]["Head"]["name"] == "MultiHead": # multi head | ||
out_channels_list = {} | ||
char_num = len(getattr(post_process_class, "character")) | ||
if config["PostProcess"]["name"] == "SARLabelDecode": | ||
char_num = char_num - 2 | ||
if config["PostProcess"]["name"] == "NRTRLabelDecode": | ||
char_num = char_num - 3 | ||
out_channels_list["CTCLabelDecode"] = char_num | ||
out_channels_list["SARLabelDecode"] = char_num + 2 | ||
out_channels_list["NRTRLabelDecode"] = char_num + 3 | ||
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list | ||
else: # base rec model | ||
config["Architecture"]["Head"]["out_channels"] = char_num | ||
|
||
# for sr algorithm | ||
if config["Architecture"]["model_type"] == "sr": | ||
config["Architecture"]["Transform"]["infer_mode"] = True | ||
|
||
# for latexocr algorithm | ||
if config["Architecture"].get("algorithm") in ["LaTeXOCR"]: | ||
config["Architecture"]["Backbone"]["is_predict"] = True | ||
config["Architecture"]["Backbone"]["is_export"] = True | ||
config["Architecture"]["Head"]["is_export"] = True | ||
if base_model is not None: | ||
model = base_model | ||
if isinstance(model, paddle.DataParallel): | ||
model = copy.deepcopy(model._layers) | ||
else: | ||
model = copy.deepcopy(model) | ||
else: | ||
model = build_model(config["Architecture"]) | ||
load_model(config, model, model_type=config["Architecture"]["model_type"]) | ||
model.eval() | ||
|
||
if not save_path: | ||
save_path = config["Global"]["save_inference_dir"] | ||
yaml_path = os.path.join(save_path, "inference.yml") | ||
|
||
arch_config = config["Architecture"] | ||
|
||
if ( | ||
arch_config["algorithm"] in ["SVTR", "CPPD"] | ||
and arch_config["Head"]["name"] != "MultiHead" | ||
): | ||
input_shape = config["Eval"]["dataset"]["transforms"][-2]["SVTRRecResizeImg"][ | ||
"image_shape" | ||
] | ||
elif arch_config["algorithm"].lower() == "ABINet".lower(): | ||
rec_rs = [ | ||
c | ||
for c in config["Eval"]["dataset"]["transforms"] | ||
if "ABINetRecResizeImg" in c | ||
] | ||
input_shape = rec_rs[0]["ABINetRecResizeImg"]["image_shape"] if rec_rs else None | ||
else: | ||
input_shape = None | ||
|
||
if arch_config["algorithm"] in [ | ||
"Distillation", | ||
]: # distillation model | ||
archs = list(arch_config["Models"].values()) | ||
for idx, name in enumerate(model.model_name_list): | ||
sub_model_save_path = os.path.join(save_path, name, "inference") | ||
export_single_model( | ||
model.model_list[idx], archs[idx], sub_model_save_path, logger | ||
) | ||
else: | ||
save_path = os.path.join(save_path, "inference") | ||
export_single_model( | ||
model, arch_config, save_path, logger, input_shape=input_shape | ||
) | ||
dump_infer_config(config, yaml_path, logger) |
Oops, something went wrong.