Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[xdoctest][task 365-370] reformat example code with google style in paddle/incubate/nn/functional/ ,paddle/incubate/optimizer/ #58178

Merged
merged 4 commits into from
Nov 3, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 9 additions & 8 deletions python/paddle/incubate/nn/functional/fused_layer_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,14 +58,15 @@ def fused_layer_norm(
Examples:
.. code-block:: python

# required: gpu
import paddle

paddle_x = paddle.cast(paddle.randn(shape=[32, 256]), dtype=paddle.float16)
paddle_weight = paddle.cast(paddle.randn(shape=[256]), dtype=paddle.float32)
paddle_bias = paddle.cast(paddle.randn(shape=[256]), dtype=paddle.float32)
epsilon = 1e-6
paddle_layernorm = paddle.incubate.nn.functional.fused_layer_norm(paddle_x, paddle_weight, paddle_bias, epsilon, 1)
>>> # doctest: +REQUIRES(env:GPU)
>>> import paddle
>>> paddle.device.set_device('gpu')

>>> paddle_x = paddle.cast(paddle.randn(shape=[32, 256]), dtype=paddle.float16)
>>> paddle_weight = paddle.cast(paddle.randn(shape=[256]), dtype=paddle.float32)
>>> paddle_bias = paddle.cast(paddle.randn(shape=[256]), dtype=paddle.float32)
>>> epsilon = 1e-6
>>> paddle_layernorm = paddle.incubate.nn.functional.fused_layer_norm(paddle_x, paddle_weight, paddle_bias, epsilon, 1)
"""

if in_dynamic_mode():
Expand Down
23 changes: 12 additions & 11 deletions python/paddle/incubate/nn/functional/masked_multihead_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,21 +71,22 @@ def masked_multihead_attention(
Examples:
.. code-block:: python

# required: gpu
import paddle
import paddle.incubate.nn.functional as F
>>> # doctest: +REQUIRES(env:GPU)
>>> import paddle
>>> import paddle.incubate.nn.functional as F
>>> paddle.device.set_device('gpu')

# input: [batch_size, 3 * num_head * dim_head]
x = paddle.rand(shape=(2, 3 * 32 * 128), dtype="float32")
>>> # input: [batch_size, 3 * num_head * dim_head]
>>> x = paddle.rand(shape=(2, 3 * 32 * 128), dtype="float32")

# src_mask: [batch_size, 1, 1, sequence_length]
src_mask = paddle.rand(shape=(2, 1, 1, 10), dtype="float32")
>>> # src_mask: [batch_size, 1, 1, sequence_length]
>>> src_mask = paddle.rand(shape=(2, 1, 1, 10), dtype="float32")

# cache_kv: [2, batch_size, num_head, max_seq_len, dim_head]
cache_kv = paddle.rand(shape=(2, 2, 32, 64, 128), dtype="float32")
>>> # cache_kv: [2, batch_size, num_head, max_seq_len, dim_head]
>>> cache_kv = paddle.rand(shape=(2, 2, 32, 64, 128), dtype="float32")

output = F.masked_multihead_attention(
x, src_mask=src_mask, cache_kv=cache_kv)
>>> output = F.masked_multihead_attention(
... x, src_mask=src_mask, cache_kv=cache_kv)

"""

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -54,38 +54,40 @@ def variable_length_memory_efficient_attention(
Examples:
.. code-block:: python

# required: gpu
import math
import paddle
from paddle.incubate.nn.functional import variable_length_memory_efficient_attention

batch = 1
num_head = 8
seq_len = 256
head_size = 32

dtype = paddle.float16

query = paddle.randn([batch, num_head, seq_len, head_size], dtype=dtype)
key = paddle.randn([batch, num_head, seq_len, head_size], dtype=dtype)
value = paddle.randn([batch, num_head, seq_len, head_size], dtype=dtype)
seq_lens = paddle.to_tensor([seq_len, ] * batch, dtype='int32')
mask = paddle.randn([batch, 1, seq_len, seq_len], dtype=dtype)

scale = float(1.0 / math.sqrt(head_size))

def naive_attention_impl(query, key, value, mask, scale):
qk_res = paddle.matmul(query, key, transpose_y=True)
attention = qk_res * scale
attention = attention + mask
softmax_result = paddle.nn.functional.softmax(attention, -1)
result = paddle.matmul(softmax_result, value)
return result

out = naive_attention_impl(query, key, value, mask, scale)
# equals to: out = variable_length_memory_efficient_attention(query, key, value, seq_lens, seq_lens, mask, scale)

print(out.shape) # [batch, seq_len, num_head, head_size]
>>> # doctest: +REQUIRES(env:GPU)
>>> import math
>>> import paddle
>>> from paddle.incubate.nn.functional import variable_length_memory_efficient_attention
>>> paddle.device.set_device('gpu')

>>> batch = 1
>>> num_head = 8
>>> seq_len = 256
>>> head_size = 32

>>> dtype = paddle.float16

>>> query = paddle.randn([batch, num_head, seq_len, head_size], dtype=dtype)
>>> key = paddle.randn([batch, num_head, seq_len, head_size], dtype=dtype)
>>> value = paddle.randn([batch, num_head, seq_len, head_size], dtype=dtype)
>>> seq_lens = paddle.to_tensor([seq_len, ] * batch, dtype='int32')
>>> mask = paddle.randn([batch, 1, seq_len, seq_len], dtype=dtype)

>>> scale = float(1.0 / math.sqrt(head_size))

>>> def naive_attention_impl(query, key, value, mask, scale):
... qk_res = paddle.matmul(query, key, transpose_y=True)
... attention = qk_res * scale
... attention = attention + mask
... softmax_result = paddle.nn.functional.softmax(attention, -1)
... result = paddle.matmul(softmax_result, value)
... return result

>>> out = naive_attention_impl(query, key, value, mask, scale)
>>> # equals to: out = variable_length_memory_efficient_attention(query, key, value, seq_lens, seq_lens, mask, scale)

>>> print(out.shape) # [batch, seq_len, num_head, head_size]
[1, 8, 256, 32]
"""
if scale is None:
head_size = query.shape[3]
Expand Down
68 changes: 34 additions & 34 deletions python/paddle/incubate/optimizer/gradient_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,40 +50,40 @@ class GradientMergeOptimizer:
Examples:
.. code-block:: python

import paddle
import paddle.base as base
import numpy as np

def gen_data(batch_size):
return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
"y": np.random.random(size=(batch_size, 1)).astype('int64')}

def mlp(input_x, input_y, hid_dim=128, label_dim=2):
fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
cost = paddle.nn.functional.cross_entropy(
input=prediction, label=input_y,
reduction='none', use_softmax=False
)
sum_cost = paddle.mean(cost)
return sum_cost, fc_1, prediction

input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
cost, fc_1, pred = mlp(input_x, input_y)
sgd = paddle.optimizer.Adam(learning_rate=0.01)
sgd = paddle.incubate.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
sgd.minimize(cost)

place = base.CPUPlace()
exe = base.Executor(place)
exe.run(base.default_startup_program())

for i in range(10):
cost_val = exe.run(feed=gen_data(32),
program=base.default_main_program(),
fetch_list=[cost.name])
print("step=%d, cost=%f" % (i, cost_val[0]))
>>> import paddle
>>> import numpy as np
>>> paddle.enable_static()

>>> def gen_data(batch_size):
... return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
... "y": np.random.random(size=(batch_size, 1)).astype('int64')}

>>> def mlp(input_x, input_y, hid_dim=128, label_dim=2):
... fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
... prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
... cost = paddle.nn.functional.cross_entropy(
... input=prediction, label=input_y,
... reduction='none', use_softmax=False
... )
... sum_cost = paddle.mean(cost)
... return sum_cost, fc_1, prediction

>>> input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
>>> input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
>>> cost, fc_1, pred = mlp(input_x, input_y)
>>> sgd = paddle.optimizer.Adam(learning_rate=0.01)
>>> sgd = paddle.incubate.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
>>> sgd.minimize(cost)

>>> place = paddle.CPUPlace()
>>> exe = paddle.static.Executor(place)
>>> exe.run(paddle.static.default_startup_program())

>>> for i in range(10):
... cost_val = exe.run(feed=gen_data(32),
... program=paddle.static.default_main_program(),
... fetch_list=[cost.name])
... print("step=%d, cost=%f" % (i, cost_val[0]))
"""

GRAD_MERGE_COND_NAME = "grad_merge_cond_name"
Expand Down
35 changes: 17 additions & 18 deletions python/paddle/incubate/optimizer/lars_momentum.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,24 +63,23 @@ class LarsMomentumOptimizer(Optimizer):
Examples:
.. code-block:: python

import paddle
import paddle.base as base
import numpy as np

paddle.enable_static()
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
inp = paddle.static.data(
name="inp", shape=[2, 2], dtype='float32')
out = paddle.static.nn.fc(inp, size=3)
out = paddle.sum(out)
optimizer = base.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(out)

exe = base.Executor(base.CPUPlace())
exe.run(base.default_startup_program())
exe.run(
feed={"inp": np_inp},
fetch_list=[out.name])
>>> import paddle
>>> import numpy as np

>>> paddle.enable_static()
>>> np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
>>> inp = paddle.static.data(
... name="inp", shape=[2, 2], dtype='float32')
>>> out = paddle.static.nn.fc(inp, size=3)
>>> out = paddle.sum(out)
>>> optimizer = paddle.incubate.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
>>> optimizer.minimize(out)

>>> exe = paddle.static.Executor(base.CPUPlace())
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

base.CPUPlace() -> paddle.CPUPlace()

SigureMo marked this conversation as resolved.
Show resolved Hide resolved
>>> exe.run(paddle.static.default_startup_program())
>>> exe.run(
... feed={"inp": np_inp},
... fetch_list=[out.name])
"""
_velocity_acc_str = "velocity"

Expand Down