Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(paddlejs-backend-cpu): add flatten_continuous_range and pool2d_max #146

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions packages/paddlejs-backend-cpu/src/ops/flatten_contiguous_range.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
import { Tensor } from './Tensor';
import { getInt } from './utils';

/* eslint-disable max-statements */
function main(tensorMap: Map<string, Tensor>, attrs: Attrs, runtime: i32): f32[] {
// v1 paddle.fluid parameter
let axis = attrs.axis;

// v2 paddle.nn parameter
let start_axis = attrs.start_axis;
let stop_axis = attrs.stop_axis;

// generic parameters
const origin = tensorMap.get('origin') as Tensor;
const out = tensorMap.get('out_' + runtime) as Tensor;

const outShape: i32[] = (out as Tensor).shape;
const startIndex = out.runtime * length;
const originReducedShape: i32[] = (origin as Tensor).shapeReduced;
const outReducedShape: i32[] = (out as Tensor).shapeReduced;

const originData: f32[] = (origin as Tensor).data;

const outN = outShape[0];
const outC = outShape[1];
const outH = outShape[2];
const outW = outShape[3];

const originS0 = originReducedShape[0];
const originS1 = originReducedShape[1];
const originS2 = originReducedShape[2];

const outS0 = outReducedShape[0];
const outS1 = outReducedShape[1];
const outS2 = outReducedShape[2];

const result = new Array<f32>(out.total);

for (let n = 0; n < outN; n++) {
for (let c = 0; c < outC; c++) {
for (let h = 0; h < outH; h++) {
for (let w = 0; w < outW; w++) {

result[n * originS0 + c * originS1 + h * originS2 + w]
= originData[n * originS0 + c * originS1 + h * originS2 + w];

}
}
}
}
return result;
}
/* eslint-enable max-statements */

class Attrs {
axis: i32 = 1;

start_axis : i32 = 0;
stop_axis : i32 = -1;

constructor(data: Obj) {
this.start_axis = getInt('start_axis', data);
this.stop_axis = getInt('stop_axis', data);
this.axis = getInt('axis', data);
}
}

const behaviors = [];

export {
main,
Attrs,
behaviors
};
129 changes: 129 additions & 0 deletions packages/paddlejs-backend-cpu/src/ops/pool2d_max.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
import { Tensor } from './Tensor';
import { getIntArray, getInt } from './utils';

/* eslint-disable max-statements, max-depth */
function main(tensorMap: Map<string, Tensor>, attrs: Attrs, runtime: i32): f32[] {
const origin = tensorMap.get('origin') as Tensor;
const out = tensorMap.get('out_' + runtime) as Tensor;

const originShape: i32[] = (origin as Tensor).shape;
const outShape: i32[] = (out as Tensor).shape;

const originData: f32[] = (origin as Tensor).data;

const originReducedShape: i32[] = (origin as Tensor).shapeReduced;
const outReducedShape: i32[] = (out as Tensor).shapeReduced;

const strides = attrs.strides;
const paddings = attrs.paddings;
const ksizes = attrs.ksize;
const pooling_type = attrs.pooling_type;

const stride_v = strides[0] || 1;
const stride_h = strides[1] || 1;
const ksize_x = ksizes[0] || 1;
const ksize_y = ksizes[1] || 1;
const padTop = paddings[0] || 0;
const padLeft = paddings[1] || 0;

const outB = outShape[0];
const outC = outShape[1];
const outH = outShape[2];
const outW = outShape[3];


const originH = originShape[2];
const originW = originShape[3];

const originS0 = originReducedShape[0];
const originS1 = originReducedShape[1];
const originS2 = originReducedShape[2];

const outS0 = outReducedShape[0];
const outS1 = outReducedShape[1];
const outS2 = outReducedShape[2];

const result = new Array<f32>(out.total);

for (let n = 0; n < outB; n++) {
for (let c = 0; c < outC; c++) {
for (let h = 0; h < outH; h++) {
for (let w = 0; w < outW; w++) {
let res = 0.0;
let count_pool = 0;
const oy_base = h * stride_v - padTop;
const ox_base = w * stride_h - padLeft;
for (let fy = 0; fy < ksize_y; fy++) {
const oy = oy_base + fy;
if (oy >= originH) {
break;
}
if (oy < 0) {
continue;
}
for (let fx = 0; fx < ksize_x; fx++) {
const ox = ox_base + fx;
if (ox >= originW) {
break;
}
if (ox < 0) {
continue;
}
// origin数据
const curr = originData[n * originS0 + c * originS1 + oy * originS2 + ox];
/* eslint-disable-next-line */
if (pooling_type == 1) {
// max-pool update
if (count_pool == 0){
res = curr;
count_pool++;
}
if (curr > res) {
res = curr;
}
}
else {
res += curr;
// 在平均池化模式忽略填充值(exclusive默认为true)
count_pool++;
}
}
}
/* eslint-disable-next-line */
if (pooling_type != 1) {
res = res / count_pool;
}
result[n * outS0 + c * outS1 + h * outS2 + w] = f32(res);
}
}
}
}

return result;
}
/* eslint-enable max-statements */

class Attrs {
strides: i32[] = [];
paddings: i32[] = [];
ksize: i32[] = [];
pooling_type: i32;
constructor(data: Obj) {
this.strides = getIntArray('strides', data);
this.paddings = getIntArray('paddings', data);
this.ksize = getIntArray('dilations', data);
this.pooling_type = getInt('groups', data);
}
}

const behaviors = [
'isMax',
'setPacked',
'isGlobalPooling'
];

export {
main,
Attrs,
behaviors
};