Skip to content

Commit

Permalink
转换规则No 72 torch.nn.functional.soft_margin_loss (#130)
Browse files Browse the repository at this point in the history
* torch.nn.functional.soft_margin_loss

* torch.nn.functional.soft_margin_loss

* torch.nn.functional.soft_margin_loss
  • Loading branch information
Liyulingyue authored Jun 29, 2023
1 parent ceb79f0 commit 2e85581
Show file tree
Hide file tree
Showing 2 changed files with 98 additions and 0 deletions.
14 changes: 14 additions & 0 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -2747,6 +2747,20 @@
"input": "x"
}
},
"torch.nn.functional.soft_margin_loss": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.functional.soft_margin_loss",
"args_list": [
"input",
"target",
"size_average",
"reduce",
"reduction"
],
"kwargs_change": {
"target": "label"
}
},
"torch.vander": {},
"torch.cross": {
"Matcher": "GenericMatcher",
Expand Down
84 changes: 84 additions & 0 deletions tests/test_nn_functional_soft_margin_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.nn.functional.soft_margin_loss")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([[1., 0., 1.],[0., 1., 1.]])
result = torch.nn.functional.soft_margin_loss(input, target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([[1., 0., 1.],[0., 1., 1.]])
result = torch.nn.functional.soft_margin_loss(input, target, reduction='sum')
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([[1., 0., 1.],[0., 1., 1.]])
result = torch.nn.functional.soft_margin_loss(input, target, reduction='none')
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([[1., 0., 1.],[0., 1., 1.]])
result = torch.nn.functional.soft_margin_loss(input, target, size_average=False)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([[1., 0., 1.],[0., 1., 1.]])
result = torch.nn.functional.soft_margin_loss(input, target, reduce=False)
"""
)
obj.run(pytorch_code, ["result"])

0 comments on commit 2e85581

Please sign in to comment.