-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
364 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
from __future__ import absolute_import | ||
|
||
import sys | ||
import subprocess | ||
import os | ||
import six | ||
import copy | ||
import argparse | ||
import time | ||
import logging | ||
|
||
from utils.args import ArgumentGroup, print_arguments, prepare_logger | ||
from finetune_args import parser as worker_parser | ||
|
||
# yapf: disable | ||
parser = argparse.ArgumentParser(__doc__) | ||
multip_g = ArgumentGroup(parser, "multiprocessing", | ||
"start paddle training using multi-processing mode.") | ||
multip_g.add_arg("node_ips", str, None, | ||
"paddle trainer ips") | ||
multip_g.add_arg("node_id", int, 0, | ||
"the trainer id of the node for multi-node distributed training.") | ||
multip_g.add_arg("print_config", bool, True, | ||
"print the config of multi-processing mode.") | ||
multip_g.add_arg("current_node_ip", str, None, | ||
"the ip of current node.") | ||
multip_g.add_arg("split_log_path", str, "log", | ||
"log path for each trainer.") | ||
multip_g.add_arg("log_prefix", str, "", | ||
"the prefix name of job log.") | ||
multip_g.add_arg("nproc_per_node", int, 8, | ||
"the number of process to use on each node.") | ||
multip_g.add_arg("selected_gpus", str, "0,1,2,3,4,5,6,7", | ||
"the gpus selected to use.") | ||
multip_g.add_arg("training_script", str, None, "the program/script to be lauched " | ||
"in parallel followed by all the arguments", positional_arg=True) | ||
multip_g.add_arg("training_script_args", str, None, | ||
"training script args", positional_arg=True, nargs=argparse.REMAINDER) | ||
# yapf: enable | ||
|
||
|
||
log = logging.getLogger() | ||
|
||
def start_procs(args): | ||
procs = [] | ||
log_fns = [] | ||
|
||
default_env = os.environ.copy() | ||
|
||
node_id = args.node_id | ||
node_ips = [x.strip() for x in args.node_ips.split(',')] | ||
current_ip = args.current_node_ip | ||
if args.current_node_ip is None: | ||
assert len(node_ips) == 1 | ||
current_ip = node_ips[0] | ||
log.info(current_ip) | ||
|
||
num_nodes = len(node_ips) | ||
selected_gpus = [x.strip() for x in args.selected_gpus.split(',')] | ||
selected_gpu_num = len(selected_gpus) | ||
|
||
all_trainer_endpoints = "" | ||
for ip in node_ips: | ||
for i in range(args.nproc_per_node): | ||
if all_trainer_endpoints != "": | ||
all_trainer_endpoints += "," | ||
all_trainer_endpoints += "%s:617%d" % (ip, i) | ||
|
||
nranks = num_nodes * args.nproc_per_node | ||
gpus_per_proc = args.nproc_per_node % selected_gpu_num | ||
if gpus_per_proc == 0: | ||
gpus_per_proc = selected_gpu_num // args.nproc_per_node | ||
else: | ||
gpus_per_proc = selected_gpu_num // args.nproc_per_node + 1 | ||
|
||
selected_gpus_per_proc = [selected_gpus[i:i + gpus_per_proc] for i in range(0, len(selected_gpus), gpus_per_proc)] | ||
|
||
if args.print_config: | ||
log.info("all_trainer_endpoints: %s" | ||
", node_id: %s" | ||
", current_ip: %s" | ||
", num_nodes: %s" | ||
", node_ips: %s" | ||
", gpus_per_proc: %s" | ||
", selected_gpus_per_proc: %s" | ||
", nranks: %s" % ( | ||
all_trainer_endpoints, | ||
node_id, | ||
current_ip, | ||
num_nodes, | ||
node_ips, | ||
gpus_per_proc, | ||
selected_gpus_per_proc, | ||
nranks)) | ||
|
||
|
||
current_env = copy.copy(default_env) | ||
procs = [] | ||
cmds = [] | ||
log_fns = [] | ||
for i in range(0, args.nproc_per_node): | ||
trainer_id = node_id * args.nproc_per_node + i | ||
assert current_ip is not None | ||
current_env.update({ | ||
"FLAGS_selected_gpus": "%s" % ",".join([str(s) for s in selected_gpus_per_proc[i]]), | ||
"PADDLE_TRAINER_ID" : "%d" % trainer_id, | ||
"PADDLE_CURRENT_ENDPOINT": "%s:617%d" % (current_ip, i), | ||
"PADDLE_TRAINERS_NUM": "%d" % nranks, | ||
"PADDLE_TRAINER_ENDPOINTS": all_trainer_endpoints, | ||
"PADDLE_NODES_NUM": "%d" % num_nodes | ||
}) | ||
|
||
try: | ||
idx = args.training_script_args.index('--is_distributed') | ||
args.training_script_args[idx + 1] = 'true' | ||
except ValueError: | ||
args.training_script_args += ['--is_distributed', 'true'] | ||
|
||
cmd = [sys.executable, "-u", | ||
args.training_script] + args.training_script_args | ||
cmds.append(cmd) | ||
|
||
if args.split_log_path: | ||
fn = open("%s/%sjob.log.%d" % (args.split_log_path, args.log_prefix, trainer_id), "a") | ||
log_fns.append(fn) | ||
process = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn) | ||
else: | ||
process = subprocess.Popen(cmd, env=current_env) | ||
log.info('subprocess launched') | ||
procs.append(process) | ||
|
||
try: | ||
for i in range(len(procs)): | ||
proc = procs[i] | ||
proc.wait() | ||
if len(log_fns) > 0: | ||
log_fns[i].close() | ||
if proc.returncode != 0: | ||
raise subprocess.CalledProcessError(returncode=procs[i].returncode, | ||
cmd=cmds[i]) | ||
else: | ||
log.info("proc %d finsh" % i) | ||
except KeyboardInterrupt as e: | ||
for p in procs: | ||
log.info('killing %s' % p) | ||
p.terminate() | ||
|
||
|
||
def main(args): | ||
if args.print_config: | ||
print_arguments(args) | ||
start_procs(args) | ||
|
||
|
||
if __name__ == "__main__": | ||
prepare_logger(log) | ||
lanch_args = parser.parse_args() | ||
finetuning_args = worker_parser.parse_args( | ||
lanch_args.training_script_args) | ||
init_path = finetuning_args.init_pretraining_params | ||
log.info("init model: %s" % init_path) | ||
if not finetuning_args.use_fp16: | ||
os.system('rename .master "" ' + init_path + '/*.master') | ||
main(lanch_args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
|
||
import sys | ||
import subprocess | ||
import os | ||
import six | ||
import copy | ||
import argparse | ||
import time | ||
import logging | ||
|
||
from utils.args import ArgumentGroup, print_arguments, prepare_logger | ||
from pretrain_args import parser as worker_parser | ||
|
||
# yapf: disable | ||
parser = argparse.ArgumentParser(__doc__) | ||
multip_g = ArgumentGroup(parser, "multiprocessing", | ||
"start paddle training using multi-processing mode.") | ||
multip_g.add_arg("node_ips", str, None, | ||
"paddle trainer ips") | ||
multip_g.add_arg("node_id", int, 0, | ||
"the trainer id of the node for multi-node distributed training.") | ||
multip_g.add_arg("print_config", bool, True, | ||
"print the config of multi-processing mode.") | ||
multip_g.add_arg("current_node_ip", str, None, | ||
"the ip of current node.") | ||
multip_g.add_arg("split_log_path", str, "./log", | ||
"log path for each trainer.") | ||
multip_g.add_arg("log_prefix", str, "", | ||
"the prefix name of job log.") | ||
multip_g.add_arg("nproc_per_node", int, 8, | ||
"the number of process to use on each node.") | ||
multip_g.add_arg("selected_gpus", str, "0,1,2,3,4,5,6,7", | ||
"the gpus selected to use.") | ||
multip_g.add_arg("training_script", str, None, "the program/script to be lauched " | ||
"in parallel followed by all the arguments", positional_arg=True) | ||
multip_g.add_arg("training_script_args", str, None, | ||
"training script args", positional_arg=True, nargs=argparse.REMAINDER) | ||
# yapf: enable | ||
|
||
|
||
log = logging.getLogger() | ||
|
||
def start_procs(args): | ||
procs = [] | ||
log_fns = [] | ||
|
||
default_env = os.environ.copy() | ||
|
||
node_id = args.node_id | ||
node_ips = [x.strip() for x in args.node_ips.split(',')] | ||
current_ip = args.current_node_ip | ||
if args.current_node_ip is None: | ||
assert len(node_ips) == 1 | ||
current_ip = node_ips[0] | ||
log.info(current_ip) | ||
|
||
num_nodes = len(node_ips) | ||
selected_gpus = [x.strip() for x in args.selected_gpus.split(',')] | ||
selected_gpu_num = len(selected_gpus) | ||
|
||
all_trainer_endpoints = "" | ||
for ip in node_ips: | ||
for i in range(args.nproc_per_node): | ||
if all_trainer_endpoints != "": | ||
all_trainer_endpoints += "," | ||
all_trainer_endpoints += "%s:617%d" % (ip, i) | ||
|
||
nranks = num_nodes * args.nproc_per_node | ||
gpus_per_proc = args.nproc_per_node % selected_gpu_num | ||
if gpus_per_proc == 0: | ||
gpus_per_proc = selected_gpu_num // args.nproc_per_node | ||
else: | ||
gpus_per_proc = selected_gpu_num // args.nproc_per_node + 1 | ||
|
||
log.info(gpus_per_proc) | ||
selected_gpus_per_proc = [selected_gpus[i:i + gpus_per_proc] for i in range(0, len(selected_gpus), gpus_per_proc)] | ||
|
||
if args.print_config: | ||
log.info("all_trainer_endpoints: %s" | ||
", node_id: %s" | ||
", current_ip: %s" | ||
", num_nodes: %s" | ||
", node_ips: %s" | ||
", gpus_per_proc: %s" | ||
", selected_gpus_per_proc: %s" | ||
", nranks: %s" % ( | ||
all_trainer_endpoints, | ||
node_id, | ||
current_ip, | ||
num_nodes, | ||
node_ips, | ||
gpus_per_proc, | ||
selected_gpus_per_proc, | ||
nranks)) | ||
|
||
current_env = copy.copy(default_env) | ||
procs = [] | ||
cmds = [] | ||
log_fns = [] | ||
for i in range(0, args.nproc_per_node): | ||
trainer_id = node_id * args.nproc_per_node + i | ||
current_env.update({ | ||
"FLAGS_selected_gpus": "%s" % ",".join([str(s) for s in selected_gpus_per_proc[i]]), | ||
"PADDLE_TRAINER_ID" : "%d" % trainer_id, | ||
"PADDLE_CURRENT_ENDPOINT": "%s:617%d" % (current_ip, i), | ||
"PADDLE_TRAINERS_NUM": "%d" % nranks, | ||
"PADDLE_TRAINER_ENDPOINTS": all_trainer_endpoints, | ||
"PADDLE_NODES_NUM": "%d" % num_nodes | ||
}) | ||
|
||
try: | ||
idx = args.training_script_args.index('--is_distributed') | ||
args.training_script_args[idx + 1] = 'true' | ||
except ValueError: | ||
args.training_script_args += ['--is_distributed', 'true'] | ||
|
||
cmd = [sys.executable, "-u", | ||
args.training_script] + args.training_script_args | ||
cmds.append(cmd) | ||
|
||
if args.split_log_path: | ||
fn = open("%s/%sjob.log.%d" % (args.split_log_path, args.log_prefix, trainer_id), "a") | ||
log_fns.append(fn) | ||
process = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn) | ||
else: | ||
process = subprocess.Popen(cmd, env=current_env) | ||
log.info('subprocess launched') | ||
procs.append(process) | ||
|
||
try: | ||
for i in range(len(procs)): | ||
proc = procs[i] | ||
proc.wait() | ||
if len(log_fns) > 0: | ||
log_fns[i].close() | ||
if proc.returncode != 0: | ||
raise subprocess.CalledProcessError(returncode=procs[i].returncode, | ||
cmd=cmds[i]) | ||
else: | ||
log.info("proc %d finsh" % i) | ||
except KeyboardInterrupt as e: | ||
for p in procs: | ||
log.info('killing %s' % p) | ||
p.terminate() | ||
|
||
|
||
def main(args): | ||
if args.print_config: | ||
print_arguments(args) | ||
start_procs(args) | ||
|
||
|
||
if __name__ == "__main__": | ||
prepare_logger(log) | ||
lanch_args = parser.parse_args() | ||
pretraining_args = worker_parser.parse_args( | ||
lanch_args.training_script_args) | ||
|
||
init_path = pretraining_args.init_checkpoint | ||
if init_path and not pretraining_args.use_fp16: | ||
os.system('rename .master "" ' + init_path + '/*.master') | ||
main(lanch_args) |