-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #136 from Ouranosinc/facetgrids
Facetgrid (multiplots)
- Loading branch information
Showing
6 changed files
with
1,317 additions
and
402 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,375 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Multiple plots" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Figanos also creates [xr.plot.facetgrid.FacetGrid](https://docs.xarray.dev/en/latest/generated/xarray.plot.FacetGrid.html) due to being wrapped around xarray plotting functions. This allows for multiple plots to be created at once. The following example shows how to create multiple timeseries and maps plots." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"pycharm": { | ||
"is_executing": true | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# import necessary libraries\n", | ||
"import xarray as xr\n", | ||
"import cartopy.crs as ccrs\n", | ||
"import figanos.matplotlib as fg\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"# use ouranos style\n", | ||
"fg.utils.set_mpl_style('ouranos')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Timeseries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create xarray object from a NetCDF\n", | ||
"url = 'https://pavics.ouranos.ca//twitcher/ows/proxy/thredds/dodsC/birdhouse/disk2/cccs_portal/indices/Final/BCCAQv2_CMIP6/tx_max/YS/ssp585/ensemble_percentiles/tx_max_ann_BCCAQ2v2+ANUSPLIN300_historical+ssp585_1950-2100_30ymean_percentiles.nc'\n", | ||
"opened = xr.open_dataset(url, decode_timedelta=False)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ds_time = opened.isel(lon=[500], lat=[150, 250])\n", | ||
"im = fg.timeseries({'p50': ds_time.tx_max_p50, 'p90': ds_time.tx_max_p90},\n", | ||
" plot_kw={'p50': {\"col\": \"lat\"}, 'p90': {\"col\": \"lat\"}},\n", | ||
" fig_kw={'figsize':(10,4)},\n", | ||
" legend=\"edge\",\n", | ||
" show_lat_lon=True)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#creating fake scenarios\n", | ||
"ds_time = ds_time[['tx_max_p10', 'tx_max_p50', 'tx_max_p90']]\n", | ||
"data = {'tasmax_ssp434': ds_time,\n", | ||
" 'tasmax_ssp245': ds_time.copy()-10,\n", | ||
" 'tasmax_ssp585': ds_time.copy()+10}\n", | ||
"\n", | ||
"fg.timeseries(data=data,\n", | ||
" legend='facetgrid',\n", | ||
" show_lat_lon=False,\n", | ||
" fig_kw = {'figsize':(9,4)},\n", | ||
" plot_kw={'tasmax_ssp434': {\"col\": \"lat\"}, 'tasmax_ssp245': {\"col\": \"lat\"}, \"tasmax_ssp585\": {\"col\": \"lat\"}}\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Maps\n", | ||
"Create multiple maps plot with figanos wrapped around [xr.plot.facetgrid.FacetGrid](https://docs.xarray.dev/en/latest/generated/xarray.plot.FacetGrid.html) by passing the key row `row` and `col` in the argument `plot_kw`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Selecting a time and slicing our starting Dataset\n", | ||
"ds_space = opened[['tx_max_p50']].isel(time=[0, 1, 2]).sel(lat=slice(40,65), lon=slice(-90,-55))\n", | ||
"\n", | ||
"# defining our projection.\n", | ||
"projection = ccrs.LambertConformal()\n", | ||
"\n", | ||
"im = fg.gridmap(ds_space,\n", | ||
" projection = projection,\n", | ||
" plot_kw = {\"col\": \"time\"},\n", | ||
" features = ['coastline','ocean'],\n", | ||
" frame = False,\n", | ||
" use_attrs={\"suptitle\": \"description\"},\n", | ||
"\n", | ||
" )\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"names = ['station_' + str(i) for i in np.arange(5)]\n", | ||
"lat = 45 + np.random.rand(5)*3\n", | ||
"lon = np.linspace(-76,-70, 5)\n", | ||
"tas = np.array([[20, 25, 30, 15, 5], [5, 0, 10, 2, 3]])\n", | ||
"yrs = np.array([[35, 65, 45, 25, 95],\n", | ||
" [15, 75, 10, 15, 50]])\n", | ||
"\n", | ||
"attrs = {'units': 'degC', 'standard_name': 'air_temperature', 'long_name': 'Near-Surface Daily Maximum Air Temperature'}\n", | ||
"\n", | ||
"tas = xr.DataArray(data=tas,\n", | ||
" coords={'season': ['DFJ', 'MAM'],\n", | ||
" 'station': names,\n", | ||
" 'lat':('station', lat),\n", | ||
" 'lon': ('station', lon),\n", | ||
" 'years': (('season', 'station'), yrs),\n", | ||
" },\n", | ||
" dims=['season', 'station'],\n", | ||
" attrs=attrs)\n", | ||
"obs = xr.Dataset({'tas': tas})\n", | ||
"\n", | ||
"# plot\n", | ||
"fg.scattermap(obs,\n", | ||
" transform=ccrs.PlateCarree(),\n", | ||
" sizes='years',\n", | ||
" size_range=(25, 100),\n", | ||
" plot_kw={\n", | ||
" \"xlim\": (-77,-69),\n", | ||
" \"ylim\":(43,50),\n", | ||
" \"col\": \"season\",\n", | ||
" },\n", | ||
" features={\n", | ||
" \"land\": {\"color\": \"#f0f0f0\"},\n", | ||
" \"rivers\": {\"edgecolor\": \"#cfd3d4\"},\n", | ||
" \"lakes\": {\"facecolor\": \"#cfd3d4\"},\n", | ||
" \"coastline\": {\"edgecolor\": \"black\"},\n", | ||
" },\n", | ||
" fig_kw={\"figsize\": (7, 4)},\n", | ||
" legend_kw={\n", | ||
" 'ncol':4,\n", | ||
" 'bbox_to_anchor':(0.15, 0.05)\n", | ||
" },\n", | ||
" )\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from xclim import ensembles\n", | ||
"sup_305k = ds_space.where(ds_space.tx_max_p50>305)\n", | ||
"inf_300k = ds_space.where(ds_space.tx_max_p50<300)\n", | ||
"\n", | ||
"im = fg.hatchmap({'sup_305k': sup_305k, 'inf_300k': inf_300k},\n", | ||
" plot_kw={\n", | ||
" 'sup_305k': {\n", | ||
" 'hatches': '*',\n", | ||
" 'col': 'time',\n", | ||
" \"x\": \"lon\",\n", | ||
" \"y\": \"lat\"\n", | ||
" },\n", | ||
" 'inf_300k': {\n", | ||
" 'hatches': 'x',\n", | ||
" 'col': 'time',\n", | ||
" \"x\": \"lon\",\n", | ||
" \"y\": \"lat\"\n", | ||
" },\n", | ||
" },\n", | ||
" features = ['coastline','ocean'],\n", | ||
" frame = True,\n", | ||
" legend_kw = {'title': 'Ensemble change'})\n", | ||
"\n", | ||
"im.fig.suptitle(\"Multiple hatchmaps\", y=1.08)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot over each other" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"To overlay two facetgrids plots, you can create the first facetgrid with `col` or `row` and then loop through the `ax` of the first facetgrid and the `xr.object` to plot the second facetgrid." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"names = ['station_' + str(i) for i in np.arange(5)]\n", | ||
"lat = 45 + np.random.rand(5)*3\n", | ||
"lon = np.linspace(-76,-70, 5)\n", | ||
"tas = np.array([[290, 300, 295, 305, 301],\n", | ||
" [275, 285, 277, 301, 345],\n", | ||
" [302, 293, 295, 292, 280]])\n", | ||
"\n", | ||
"attrs = {'units': 'degK', 'standard_name': 'air_temperature', 'long_name': ds_space.tx_max_p50.attrs['description']}\n", | ||
"\n", | ||
"tas = xr.DataArray(data=tas,\n", | ||
" coords={'time': ds_space.time.values,\n", | ||
" 'station': names,\n", | ||
" 'lat':('station', lat),\n", | ||
" 'lon': ('station', lon),\n", | ||
" },\n", | ||
" dims=['time', 'station'],\n", | ||
" attrs=attrs)\n", | ||
"obs2 = xr.Dataset({'tas': tas})" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"vmin=280\n", | ||
"vmax=310\n", | ||
"ds_space = opened[['tx_max_p50']].isel(time=[0, 1, 2]).sel(lat=slice(40,65), lon=slice(-90,-55))\n", | ||
"\n", | ||
"im = fg.gridmap(ds_space,\n", | ||
" projection = projection,\n", | ||
" plot_kw = {\"col\": \"time\",\n", | ||
" \"xlim\": (-77,-69),\n", | ||
" \"ylim\": (43,50),\n", | ||
" \"vmin\": vmin, \"vmax\": vmax,\n", | ||
" },\n", | ||
" features = ['coastline','ocean'],\n", | ||
" frame = False,\n", | ||
" use_attrs={\"suptitle\": \"description\"}\n", | ||
" )\n", | ||
"for i, fax in enumerate(im.axs.flat):\n", | ||
" fg.scattermap(obs2.isel(time=i),\n", | ||
" ax=fax,\n", | ||
" transform=ccrs.PlateCarree(),\n", | ||
" plot_kw={'x':'lon',\n", | ||
" 'y':'lat',\n", | ||
" 'vmin': vmin,\n", | ||
" 'vmax': vmax,\n", | ||
" 'edgecolor':'grey',\n", | ||
" 'add_colorbar': False},\n", | ||
" show_time=False\n", | ||
" )\n", | ||
"im.fig.suptitle('Scattermaps over gridmaps', x=0.45, y=0.95)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Limitations\n", | ||
"When the argument `col_wrap` is used for a facetgrid whose number of plots is not a multiple of `col_wrap`, no plot will be shown (see [issue](https://github.com/pydata/xarray/discussions/8563)). `set_extend` needs to be passed to every axis in the facetgrid to avoid this issue.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Selecting a time and slicing our starting Dataset\n", | ||
"ds_space = opened[['tx_max_p50']].isel(time=[0, 1, 2]).sel(lat=slice(40,65), lon=slice(-90,-55))\n", | ||
"\n", | ||
"im = fg.gridmap(ds_space,\n", | ||
" projection = ccrs.LambertConformal(),\n", | ||
" plot_kw = {\"col\": \"time\",\n", | ||
" \"col_wrap\": 2},\n", | ||
" features = ['coastline','ocean'],\n", | ||
" frame = False,\n", | ||
" use_attrs={\"suptitle\": \"long_name\"},\n", | ||
" fig_kw = {\"figsize\": (6, 6)}\n", | ||
" )\n", | ||
"for i, fax in enumerate(im.axs.flat):\n", | ||
" fax.set_extent([\n", | ||
" ds_space.lon.min().item(),\n", | ||
" ds_space.lon.max().item(),\n", | ||
" ds_space.lat.min().item(),\n", | ||
" ds_space.lat.max().item(),\n", | ||
" ]\n", | ||
" )\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Xarray plots by default facetgrid ylabels to the right (next to the colorbar). The example below shows how to move the xlabels to the left." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"op = opened.isel(time=[0, 1])\n", | ||
"data = xr.DataArray(\n", | ||
" data=np.array([op.tx_max_p10.values, op.tx_max_p50.values, op.tx_max_p90.values]),\n", | ||
" dims=['percentile', 'time', 'lat', 'lon'],\n", | ||
" coords={'percentile': [10, 50, 90], 'time': op.time.values, 'lat': op.lat.values, 'lon': op.lon.values},\n", | ||
" attrs = {'units': 'degC', 'standard_name': 'air_temperature', 'long_name': 'Near-Surface Daily Maximum Air Temperature'}\n", | ||
" )\n", | ||
"\n", | ||
"im = fg.gridmap(data,\n", | ||
" projection = ccrs.LambertConformal(),\n", | ||
" plot_kw = {\"col\": \"time\",\n", | ||
" \"row\": \"percentile\",\n", | ||
" },\n", | ||
" features = ['coastline','ocean'],\n", | ||
" frame = False,\n", | ||
" use_attrs = {\"suptitle\": \"long_name\"},\n", | ||
" fig_kw = {\"figsize\": (8, 7)},\n", | ||
" )\n", | ||
"\n", | ||
"# modify xlabels positions (hardcoded in xarray.plot)\n", | ||
"for i, fax in enumerate(im.axs.flat):\n", | ||
" for txt in fax.texts:\n", | ||
" if len(txt.get_text()) > 0:\n", | ||
" txt.set_x(-1.2)\n", | ||
" txt.set_text('percentile ' + txt.get_text())\n", | ||
" txt.set_rotation('vertical')\n", | ||
" # txt.set_visible(False)\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Oops, something went wrong.