Get started by downloading the latest release:
- Download the latest release
- Clone the repo:
git clone https://github.com/NicoMigenda/NGPCA-Clustering.git
Within the download you'll find the following directories and files:
Download contents
|-- Example_dynamic.m
|-- Example_dynamic.mlx
|-- Example_stationary.m
|-- Example_stationary.mlx
|-- README.md
|-- Results
| `-- gif
| |-- dynamic.gif
| `-- s1.gif
|-- data
| |-- rls.mat
| |-- s1.mat
| `-- vortex.m
`-- ngpca
|-- NGPCA.m
|-- drawunits.m
|-- eforrlsa.m
|-- init.m
|-- normalizedmi.m
|-- plot_ellipse.m
|-- potentialFunction.m
|-- update.m
|-- validate_CI.m
`-- validate_NMI_DU.m
The latest release contains all files needed to directly run the algorithm:
1 Open either Example_dynamic.m
or Example_stationary.m
in Matlab or alternativly use the provided live script versions (.mlx)
2. Running the scripts will automatically perform NGPCA-Clustering on the s1 or ring-line-square + vortex data set or with standard settings
Optional:
- Change default settings or add optional parameters to the ngpca object creation or for the training process
- Train the model directly on a full data set using the
fit_multiple()
function or build your own training loops withfit_single()
- Visualize the clustering results with the
draw()
function - Calculate validation metrics (CI, NMI, DU) by providing ground thruth and cluster shape information
The following visualizations represent the learning process on selected data sets of the standard clustering benchmark database. For all data sets the default settings are used.
Nico Migenda, Center for Applied Data Science Gütersloh, Bielefeld University of Applied Sciences and Arts, Germany
Ralf Möller, Computer Engineering Group, Faculty of Technology, Bielefeld University, Germany
Wolfram Schenck, Center for Applied Data Science Gütersloh, Bielefeld University of Applied Sciences and Arts, Germany