Skip to content

Commit

Permalink
Merge pull request #32 from NeuroTechX/new_datasets
Browse files Browse the repository at this point in the history
New datasets and parameter confirmation
  • Loading branch information
vinay-jayaram authored Apr 8, 2018
2 parents d8f46ae + 05347fe commit 9ad04c3
Show file tree
Hide file tree
Showing 24 changed files with 1,448 additions and 174 deletions.
9 changes: 6 additions & 3 deletions docs/source/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,14 @@ Motor Imagery Datasets
BNCI2015004

AlexMI
GigaDbMI
BBCIEEGfNIRS
Cho2017
Shin2017A
Shin2017B
OpenvibeMI
PhysionetMI
UpperLimb
Ofner2017
Zhou2016
Weibo2014

------------
ERP Datasets
Expand Down
7 changes: 6 additions & 1 deletion docs/source/paradigms.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,11 @@ Motor Imagery Paradigms
:toctree: generated/
:template: class.rst

BaseMotorImagery
MotorImagery
LeftRightImagery

FilterBankMotorImagery
FilterBankLeftRightImagery

------------
Base & Utils
Expand All @@ -26,4 +28,7 @@ Base & Utils
:toctree: generated/
:template: class.rst

motor_imagery.BaseMotorImagery
motor_imagery.SinglePass
motor_imagery.FilterBank
base.BaseParadigm
7 changes: 4 additions & 3 deletions docs/source/pipelines.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,15 +6,16 @@ Pipelines

.. currentmodule:: moabb.pipelines

----------------------
Motor Imagery Datasets
----------------------
---------
Pipelines
---------

.. autosummary::
:toctree: generated/
:template: class.rst

features.LogVariance
filter_bank.FilterBank

------------
Base & Utils
Expand Down
7 changes: 4 additions & 3 deletions examples/plot_filterbank_csp_vs_csp.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,9 @@
overwrite = False # set to True if we want to overwrite cached results

# broadband filters
filters = [[8, 35]]
paradigm = LeftRightImagery(filters=filters)
fmin=8
fmax=35
paradigm = LeftRightImagery(fmin=fmin, fmax=fmax)
evaluation = CrossSessionEvaluation(paradigm=paradigm, datasets=datasets,
suffix='examples', overwrite=overwrite)
results = evaluation.process(pipelines)
Expand All @@ -78,7 +79,7 @@

# bank of 6 filter, by 4 Hz increment
filters = [[8, 12], [12, 16], [16, 20], [20, 24], [24, 28], [28, 35]]
paradigm = FilterBankLeftRightImagery()
paradigm = FilterBankLeftRightImagery(filters=filters)
evaluation = CrossSessionEvaluation(paradigm=paradigm, datasets=datasets,
suffix='examples', overwrite=overwrite)
results_fb = evaluation.process(pipelines_fb)
Expand Down
161 changes: 161 additions & 0 deletions moabb/datasets/Weibo2014.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
'''
Simple and compound motor imagery
https://doi.org/10.1371/journal.pone.0114853
'''

from .base import BaseDataset
import zipfile as z
from scipy.io import loadmat
from mne.datasets.utils import _get_path, _do_path_update
from mne.utils import _fetch_file
import mne
import numpy as np
import os
import shutil

import logging
log = logging.getLogger()

FILES = []
FILES.append('https://dataverse.harvard.edu/api/access/datafile/2499178')
FILES.append('https://dataverse.harvard.edu/api/access/datafile/2499182')
FILES.append('https://dataverse.harvard.edu/api/access/datafile/2499179')


def eeg_data_path(base_path, subject):
file1_subj = ['cl', 'cyy', 'kyf', 'lnn']
file2_subj = ['ls', 'ry', 'wcf']
file3_subj = ['wx', 'yyx', 'zd']

def get_subjects(sub_inds, sub_names, ind):
dataname = 'data{}'.format(ind)
if not os.path.isfile(os.path.join(base_path, dataname+'.zip')):
_fetch_file(FILES[ind], os.path.join(
base_path, dataname + '.zip'), print_destination=False)
with z.ZipFile(os.path.join(base_path, dataname + '.zip'), 'r') as f:
os.makedirs(os.path.join(base_path, dataname), exist_ok=True)
f.extractall(os.path.join(base_path, dataname))
for fname in os.listdir(os.path.join(base_path, dataname)):
for ind, prefix in zip(sub_inds, sub_names):
if fname.startswith(prefix):
os.rename(os.path.join(base_path, dataname, fname),
os.path.join(base_path,
'subject_{}.mat'.format(ind)))
os.remove(os.path.join(base_path, dataname + '.zip'))
shutil.rmtree(os.path.join(base_path, dataname))

if not os.path.isfile(os.path.join(base_path,
'subject_{}.mat'.format(subject))):
if subject in range(1, 5):
get_subjects(list(range(1, 5)), file1_subj, 0)
elif subject in range(5, 8):
get_subjects(list(range(5, 8)), file2_subj, 1)
elif subject in range(8, 11):
get_subjects(list(range(8, 11)), file3_subj, 2)
return os.path.join(base_path, 'subject_{}.mat'.format(subject))


class Weibo2014(BaseDataset):
"""Motor Imagery dataset from Weibo et al 2014.
Dataset from the article *Evaluation of EEG oscillatory patterns and
cognitive process during simple and compound limb motor imagery* [1]_.
It contains data recorded on 10 subjects, with 60 electrodes.
This dataset was used to investigate the differences of the EEG patterns
between simple limb motor imagery and compound limb motor
imagery. Seven kinds of mental tasks have been designed, involving three
tasks of simple limb motor imagery (left hand, right hand, feet), three
tasks of compound limb motor imagery combining hand with hand/foot
(both hands, left hand combined with right foot, right hand combined with
left foot) and rest state.
At the beginning of each trial (8 seconds), a white circle appeared at the
center of the monitor. After 2 seconds, a red circle (preparation cue)
appeared for 1 second to remind the subjects of paying attention to the
character indication next. Then red circle disappeared and character
indication (‘Left Hand’, ‘Left Hand & Right Foot’, et al) was presented on
the screen for 4 seconds, during which the participants were asked to
perform kinesthetic motor imagery rather than a visual type of imagery
while avoiding any muscle movement. After 7 seconds, ‘Rest’ was presented
for 1 second before next trial (Fig. 1(a)). The experiments were divided
into 9 sections, involving 8 sections consisting of 60 trials each for six
kinds of MI tasks (10 trials for each MI task in one section) and one
section consisting of 80 trials for rest state. The sequence of six MI
tasks was randomized. Intersection break was about 5 to 10 minutes.
References
-----------
.. [1] Yi, Weibo, et al. "Evaluation of EEG oscillatory patterns and
cognitive process during simple and compound limb motor imagery."
PloS one 9.12 (2014). https://doi.org/10.1371/journal.pone.0114853
"""

def __init__(self):
super().__init__(
subjects=list(range(1, 11)),
sessions_per_subject=1,
events=dict(left_hand=1, right_hand=2,
hands=3, feet=4, left_hand_right_foot=5,
right_hand_left_foot=6, rest=7),
code='Weibo 2014',
# Full trial w/ rest is 0-8
interval=[3, 7],
paradigm='imagery',
doi='10.1371/journal.pone.0114853')

def _get_single_subject_data(self, subject):
"""return data for a single subject"""
fname = self.data_path(subject)
# TODO: add 1s 0 buffer between trials and make continuous
data = loadmat(fname, squeeze_me=True, struct_as_record=False,
verify_compressed_data_integrity=False)
montage = mne.channels.read_montage('standard_1005')
ch_names = ['Fp1', 'Fpz', 'Fp2', 'AF3', 'AF4', 'F7', 'F5', 'F3', 'F1',
'Fz', 'F2', 'F4', 'F6', 'F8', 'FT7', 'FC5', 'FC3', 'FC1',
'FCz', 'FC2', 'FC4', 'FC6', 'FT8', 'T7', 'C5', 'C3', 'C1',
'Cz', 'C2', 'C4', 'C6', 'T8', 'TP7', 'CP5', 'CP3', 'CP1',
'CPz', 'CP2', 'CP4', 'CP6', 'TP8', 'P7', 'P5', 'P3', 'P1',
'Pz', 'P2', 'P4', 'P6', 'P8', 'PO7', 'PO5', 'PO3', 'POz',
'PO4', 'PO6', 'PO8', 'CB1', 'O1', 'Oz', 'O2', 'CB2', 'VEO',
'HEO']

ch_types = ['eeg'] * 62 + ['eog'] * 2
# FIXME not sure what are those CB1 / CB2
ch_types[57] = 'misc'
ch_types[61] = 'misc'
info = mne.create_info(ch_names=ch_names + ['STIM014'],
ch_types=ch_types + ['stim'],
sfreq=200, montage=None)
# until we get the channel names montage is None
event_ids = data['label'].ravel()
raw_data = np.transpose(data['data'], axes=[2, 0, 1])
# de-mean each trial
raw_data = raw_data - np.mean(raw_data, axis=2, keepdims=True)
raw_events = np.zeros((raw_data.shape[0], 1, raw_data.shape[2]))
raw_events[:, 0, 0] = event_ids
data = np.concatenate([1e-6 * raw_data, raw_events], axis=1)
# add buffer in between trials
log.warning(
"Trial data de-meaned and concatenated with a buffer to create "
"cont data")
zeroshape = (data.shape[0], data.shape[1], 50)
data = np.concatenate([np.zeros(zeroshape), data,
np.zeros(zeroshape)], axis=2)
raw = mne.io.RawArray(data=np.concatenate(list(data), axis=1),
info=info, verbose=False)
raw.set_montage(montage)
return {'session_0': {'run_0': raw}}

def data_path(self, subject, path=None, force_update=False,
update_path=None, verbose=None):
if subject not in self.subject_list:
raise(ValueError("Invalid subject number"))
key = 'MNE_DATASETS_WEIBO2014_PATH'
path = _get_path(path, key, "Weibo 2014")
_do_path_update(path, True, key, "Weibo 2014")
basepath = os.path.join(path, "MNE-weibo-2014")
if not os.path.isdir(basepath):
os.makedirs(basepath)
return eeg_data_path(basepath, subject)
109 changes: 109 additions & 0 deletions moabb/datasets/Zhou2016.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
'''
Simple and compound motor imagery.
https://doi.org/10.1371/journal.pone.0114853
'''

from .base import BaseDataset
import zipfile as z
from mne.io import read_raw_cnt
from mne.datasets.utils import _get_path, _do_path_update
from mne.utils import _fetch_file
import os
import shutil

DATA_PATH = 'https://ndownloader.figshare.com/files/3662952'


def local_data_path(base_path, subject):
if not os.path.isdir(os.path.join(base_path,
'subject_{}'.format(subject))):
if not os.path.isdir(os.path.join(base_path, 'data')):
_fetch_file(DATA_PATH, os.path.join(base_path, 'data.zip'),
print_destination=False)
with z.ZipFile(os.path.join(base_path, 'data.zip'), 'r') as f:
f.extractall(base_path)
os.remove(os.path.join(base_path, 'data.zip'))
datapath = os.path.join(base_path, 'data')
for i in range(1, 5):
os.makedirs(os.path.join(base_path, 'subject_{}'.format(i)))
for session in range(1, 4):
for run in ['A', 'B']:
os.rename(os.path.join(datapath,
'S{}_{}{}.cnt'.format(i, session,
run)),
os.path.join(base_path,
'subject_{}'.format(i),
'{}{}.cnt'.format(session, run)))
shutil.rmtree(os.path.join(base_path, 'data'))
subjpath = os.path.join(base_path, 'subject_{}'.format(subject))
return [[os.path.join(subjpath, '{}{}.cnt'.format(y, x))
for x in ['A', 'B']] for y in ['1', '2', '3']]


class Zhou2016(BaseDataset):
"""Motor Imagery dataset from Zhou et al 2016.
Dataset from the article *A Fully Automated Trial Selection Method for
Optimization of Motor Imagery Based Brain-Computer Interface* [1]_.
This dataset contains data recorded on 4 subjects performing 3 type of
motor imagery: left hand, right hand and feet.
Every subject went through three sessions, each of which contained two
consecutive runs with several minutes inter-run breaks, and each run
comprised 75 trials (25 trials per class). The intervals between two
sessions varied from several days to several months.
A trial started by a short beep indicating 1 s preparation time,
and followed by a red arrow pointing randomly to three directions (left,
right, or bottom) lasting for 5 s and then presented a black screen for
4 s. The subject was instructed to immediately perform the imagination
tasks of the left hand, right hand or foot movement respectively according
to the cue direction, and try to relax during the black screen.
References
----------
.. [1] Zhou B, Wu X, Lv Z, Zhang L, Guo X (2016) A Fully Automated
Trial Selection Method for Optimization of Motor Imagery Based
Brain-Computer Interface. PLoS ONE 11(9).
https://doi.org/10.1371/journal.pone.0162657
"""

def __init__(self):
super().__init__(
subjects=list(range(1, 5)),
sessions_per_subject=3,
events=dict(left_hand=1, right_hand=2,
feet=3),
code='Zhou 2016',
# MI 1-6s, prepare 0-1, break 6-10
# boundary effects
interval=[1, 6],
paradigm='imagery',
doi='10.1371/journal.pone.0162657')

def _get_single_subject_data(self, subject):
"""return data for a single subject"""
files = self.data_path(subject)

out = {}
for sess_ind, runlist in enumerate(files):
sess_key = 'session_{}'.format(sess_ind)
out[sess_key] = {}
for run_ind, fname in enumerate(runlist):
run_key = 'run_{}'.format(run_ind)
out[sess_key][run_key] = read_raw_cnt(fname, preload=True,
montage='standard_1005')
return out

def data_path(self, subject, path=None, force_update=False,
update_path=None, verbose=None):
if subject not in self.subject_list:
raise(ValueError("Invalid subject number"))
key = 'MNE_DATASETS_ZHOU2016_PATH'
path = _get_path(path, key, "Zhou 2016")
_do_path_update(path, True, key, "Zhou 2016")
basepath = os.path.join(path, "MNE-zhou-2016")
if not os.path.isdir(basepath):
os.makedirs(basepath)
return local_data_path(basepath, subject)
12 changes: 8 additions & 4 deletions moabb/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,14 @@
and will convert them into a MNE raw object. There are options to pool all the
different recording sessions per subject or to evaluate them separately.
"""
from .gigadb import GigaDbMI
# flake8: noqa
from .gigadb import Cho2017
from .alex_mi import AlexMI
from .physionet_mi import PhysionetMI
from .bnci import BNCI2014001, BNCI2014002, BNCI2014004, BNCI2015001, BNCI2015004
from .bnci import (BNCI2014001, BNCI2014002, BNCI2014004, BNCI2015001,
BNCI2015004)
from .openvibe_mi import OpenvibeMI
from .bbci_eeg_fnirs import BBCIEEGfNIRS
from .upper_limb import UpperLimb
from .bbci_eeg_fnirs import Shin2017A, Shin2017B
from .upper_limb import Ofner2017
from .Weibo2014 import Weibo2014
from .Zhou2016 import Zhou2016
Loading

0 comments on commit 9ad04c3

Please sign in to comment.