Skip to content

ModelZoo/ImageClassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ImageClassification

Image Classification Model implemented by ModelZoo.

Installation

Firstly you need to clone this repository and install dependencies with pip:

pip3 install -r requirements.txt

Dataset

We use Fashion Mnist dataset for example.

Usage

We can run this model like this:

python3 train.py

Outputs like this:

Epoch 1/20
1874/1875 [============================>.] - ETA: 0s - loss: 0.4318 - acc: 0.8427
1875/1875 [==============================] - 80s 43ms/step - loss: 0.4318 - acc: 0.8427 - val_loss: 0.3753 - val_acc: 0.8644
Epoch 2/20
1873/1875 [============================>.] - ETA: 0s - loss: 0.3295 - acc: 0.8777
Epoch 00002: saving model to checkpoints/model.ckpt
1875/1875 [==============================] - 82s 44ms/step - loss: 0.3295 - acc: 0.8777 - val_loss: 0.3684 - val_acc: 0.8716
Epoch 3/20
1872/1875 [============================>.] - ETA: 0s - loss: 0.2982 - acc: 0.8887
1875/1875 [==============================] - 70s 37ms/step - loss: 0.2984 - acc: 0.8887 - val_loss: 0.3563 - val_acc: 0.8726
Epoch 4/20
1873/1875 [============================>.] - ETA: 0s - loss: 0.2872 - acc: 0.8952
Epoch 00004: saving model to checkpoints/model.ckpt
1875/1875 [==============================] - 53s 28ms/step - loss: 0.2873 - acc: 0.8952 - val_loss: 0.3418 - val_acc: 0.8775
Epoch 5/20
1872/1875 [============================>.] - ETA: 0s - loss: 0.2679 - acc: 0.9000
1875/1875 [==============================] - 61s 33ms/step - loss: 0.2678 - acc: 0.9000 - val_loss: 0.3331 - val_acc: 0.8831

OK, we've finished training. Just so quickly.

TensorBoard

Go to events folder, and run TensorBoard:

cd events
tensorboard --logdir=.

Performance

Here is the benchmark of implemented models:

Models Eval Accuracy Eval Loss
FashionMnistModel 0.8630 0.3945

License

MIT

About

Image Classification Model implemented by ModelZoo

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published