Skip to content

This project is aimed at performing basic exploratory data analysis and house prices prediction for Ames House Prices dataset.

Notifications You must be signed in to change notification settings

Miracle-Aligner/house-prices-eda-and-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

House Prices - basic EDA + prediction

Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. Ames Houses Prices dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this project aimed on prediction the final price of each home.

Contents

Current solution consists of three parts:

  1. Data exploration, analysis and preprocessing.
  • Data types
  • Null values
  • Correlation
  • Feature engineering
  • Skewness
  1. ML model building, evaluation.
  • LinearRegression
  • Lasso Regression
  • Random Forest Regression
  • Hyperparameter tuning
  • Models comparison
  1. Prediction conduction.

Result

The final model's MAE is about 10.0% of the mean house price.

The result is presented in a 'eda+prediction' jupyter notebook file.

About

This project is aimed at performing basic exploratory data analysis and house prices prediction for Ames House Prices dataset.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published