-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstrucfit.py
244 lines (200 loc) · 7.52 KB
/
strucfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/home/wms_joe/bin/miniconda2/bin/python
"""
This script pulls in homologs of proteins from PDB
as determined by HHSuite. It then employs UCSF Chimera to
structurally match them and get an indication of how well
they score (RMSD) in order to pick the best simulation.
"""
import os
import subprocess
import sys
import argparse
import traceback
import warnings
import fnmatch
import pandas as pd
from io import StringIO
import pychimera
import chimera
from chimera import openModels, Molecule
from chimera import runCommand as rc
from MatchMaker import (match,
CP_BEST,
GAP_OPEN,
GAP_EXTEND,
defaults,
MATRIX,
ITER_CUTOFF)
# HHSuite output parser/template
template = \
u"""
---|------|------------------------|----|-------|-------|------|-----|----|---------|--------------|
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
"""
def hhparse(hhresult_file):
pattern = StringIO(template).readlines()[1]
colBreaks = [i for i, ch in enumerate(pattern) if ch == '|']
widths = [j-i for i, j in zip( ([0]+colBreaks)[:-1], colBreaks ) ]
hhtable = pd.read_fwf(hhresult_file, skiprows=8, nrows=10, header=0, widths = widths)
print(hhtable.dtypes)
print(hhtable)
top_hit = str(hhtable.loc[0,'Hit'])[0:4]
top_prob = hhtable.loc[0,'Prob']
top_eval = hhtable.loc[0,'E-value']
top_pval = hhtable.loc[0,'P-value']
top_score = hhtable.loc[0,'Score']
return top_hit, top_prob, top_eval, top_pval, top_score
# If running using python interpreter and not pychimera:
# os.environ['CHIMERADIR'] = '/home/wms_joe/Applications/CHIMERA1.11'
# CHIMERADIR should point to the application root directory.
# This can be found with: `chimera --root`
# Only needed if running via normal python interpreter, not pychimera
# pychimera.patch_environ()
# pychimera.enable_chimera()
##### Main code begins #####
# Step 1, parse the output of HHpred to get the nearest homolog.
def main():
def_cpus=4
def_dir=os.getcwd()
try:
parser = argparse.ArgumentParser(description='This script compares protein structural homologs as determined with HHpred, to PDB models using UCSF CHIMERA, to gather metrics of structural similarity.')
parser.add_argument(
'-d',
'--database',
action='store',
default=None,
help='You can specify a different HHpred database (filepath) to use if you offer this parameter. Otherwise it defaults to PDB.')
parser.add_argument(
'-f',
'--fasta',
action='store',
help='The fasta amino acid sequence that corresponds to the simulated structure and the sequence you wish to query.')
parser.add_argument(
'-s',
'--simulations',
action='store',
help='The directory where the protein structure simulations are stored. They must be in PDB format and be named logically.')
parser.add_argument(
'-r',
'--rmsd',
action='store',
default=None,
help='The filename to store the RMSD values for each matching.')
parser.add_argument(
'-t',
'--threads',
action='store',
default=def_cpus,
help='The number of threads that HHsearch can execute on.')
parser.add_argument(
'-o',
'--outdir',
action='store',
default=def_dir,
help="Directory for files to be written to. Default is the current working directory.")
args = parser.parse_args()
except:
print("An exception occured with argument parsing. Check your provided options.")
traceback.print_exc()
# Acquire HHPred Database
if args.database is None:
db_cmd = 'find ~/Applications/HHSuite/databases/pdb70 -type f -name "pdb70_hhm.ffdata"'
db_path = subprocess.Popen(
db_cmd,
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = db_path.communicate()
filelist = stdout.decode().split()
args.database = stdout
else:
print("No default database found and you haven't provided one directly.")
if args.fasta is not None:
split = os.path.splitext(args.fasta)
basename = os.path.basename(split[0])
else:
print('No input fasta was provided. Check your input parameters')
sys.exit(1)
# Run the HHsearch
if args.fasta is not None and args.database is not None:
print(sys.path)
print("\n")
print("Running " + args.fasta + " in HHsearch, against " + args.database + " on " + str(args.threads) + " threads.")
hhresult_file = './{0}.hhr'.format(basename)
search_cmd = 'hhsearch -dbstrlen 50 -B 1 -b 1 -p 60 -Z 1 -E 1E-03 -nocons -nopred -nodssp -cpu {0} -i {1} -d {2}'.format(args.threads,args.fasta, args.database)
print("\n")
print("Executing HHsearch with the command:")
print(search_cmd)
hh_process = subprocess.Popen(
search_cmd,
shell=True,
stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
hh_process.wait()
else:
print("No fasta or database has been detected. Check your input parameters.")
sys.exit(1)
# Parse HHpred output and acquire the best hit
top_hit, top_prob, top_eval, top_pval, top_score = hhparse(hhresult_file)
print("Your best hit: (PDB ID | Probability | E-Value | P-Value | Score)")
print("\t" + str(top_hit) + "\t" + str(top_prob) + "\t" + str(top_eval) + "\t" + str(top_pval) + "\t" + str(top_score) )
print("Full results are found in: " + hhresult_file)
# Acquire the protein simulations
model_list = []
for root, dirnames, filenames in os.walk(args.simulations):
for filename in sorted(fnmatch.filter(filenames, '*.pdb')):
if filename.startswith(basename):
model_list.append(os.path.join(root, filename))
if not model_list:
print("No protein structures were found matching: " + basename)
sys.exit(1)
else:
print("\n")
print("Found the following models:")
print("---------------------------")
for model_path in model_list:
locus_dir = os.path.dirname(os.path.abspath(model_path))
print("Found: " + os.path.basename(model_path) + " in " + locus_dir)
# Get reference structure from PDB
print("\n")
print("Beginning Chimera:")
print("---------------------------")
chimera.openModels.open(top_hit,type="PDB")
print("Opened reference structure: " + top_hit)
# Open model structures
for model_path in model_list:
chimera.openModels.open(model_path,type="PDB")
print("Opened: " + os.path.basename(model_path))
if args.rmsd is not None:
rmsd_file = args.rmsd
else:
joint_path = os.path.join(locus_dir,basename)
rmsd_file = '{0}_RMSDs.tsv'.format(joint_path)
print("\n")
print("RMSD values are:")
print("---------------------------")
with open(rmsd_file, "w") as rmsd_output_file:
all_models = chimera.openModels.list(modelTypes=[chimera.Molecule])
ref = all_models[0]
sims = all_models[1:]
for atoms1, atoms2, rmsd, fullRmsd in match(CP_BEST,[ref, sims],defaults[MATRIX],
"nw",defaults[GAP_OPEN],defaults[GAP_EXTEND]):
ref_mol = atoms2[0].molecule
sim_mol = atoms1[0].molecule
print(ref_mol.name + "\t" + sim_mol.name + "\t" + str(rmsd))
rmsd_output_file.write(ref_mol.name + "\t" \
+ sim_mol.name + "\t" \
+ str(rmsd) + "\t" \
+ str(top_prob) + "\t" \
+ str(top_eval) + "\t" \
+ str(top_pval) + "\t" \
+ str(top_score) + "\n")
rc('save {0}_session.py'.format(joint_path))
chimera.closeSession()
print("Chimera exited. All done. All results are in:")
print(locus_dir)
rc('stop now')
sys.exit(0)
if __name__ == '__main__' :
main()