Embeddings of 1024 features generated using the satellite images of the top 5 municipalities with most dengue cases in Colombia. The embeddings were generated usign dimensionality reduction methods such as:
- Supervised Contrastive Learning:
- Code to create the model: Contrastive_learning.ipynb
- Code to generate the embeddings: Features_Contrastive_learning.ipynb
- Variational Autoencoder
- Code to create the model: Variational_Autoencoder.ipynb
- Code to generate the embeddings: Features_Variational_Autoencoder.ipynb
- Autoencoder
- Code to create the model: Autoencoder.ipynb
- Code to generate the embeddings: Features_Autoencoder.ipynb
The embeddigns can be found in the folder Embeddings/
with the names:
-
Features of Supervised Contrastive Learning:
embeddings_contrastive_learning_1024features.csv
-
Features of Variational Autoencoder:
embeddings_vae_1024features.csv
-
Features of Autoencoder:
embeddings_autoencoder_1024features.csv
All labels used to train the models can be found in the folder: Dengue_dataset/
- Labels with dengue cases per inhabitans for regression:
cases_per_inhabitants.csv
- Labels with peak or not peak of dengue for binary classification:
binary_classes.csv
- Labels with increase, decrease or stable dengue cases across weeks for multi-class classification:
multiclass_labels.csv
- Labels with dengue cases across weeks and other sociodemographic/socioeconomic variables per municipality:
dengue_data_all_municipalities.csv
-
LSTM for regression of dengue cases using the embeddigns.
-
LSTM for multiclass classification using the emebeddings.
-
Binary classification + Contrastive learning.