Skip to content

MITCriticalData-Colombia/Satellite_Images_Embeddings

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Satellite_Images_Embeddings

Embeddings:

Embeddings of 1024 features generated using the satellite images of the top 5 municipalities with most dengue cases in Colombia. The embeddings were generated usign dimensionality reduction methods such as:

  1. Supervised Contrastive Learning:
  • Code to create the model: Contrastive_learning.ipynb
  • Code to generate the embeddings: Features_Contrastive_learning.ipynb
  1. Variational Autoencoder
  • Code to create the model: Variational_Autoencoder.ipynb
  • Code to generate the embeddings: Features_Variational_Autoencoder.ipynb
  1. Autoencoder
  • Code to create the model: Autoencoder.ipynb
  • Code to generate the embeddings: Features_Autoencoder.ipynb

The embeddigns can be found in the folder Embeddings/ with the names:

  • Features of Supervised Contrastive Learning: embeddings_contrastive_learning_1024features.csv

  • Features of Variational Autoencoder: embeddings_vae_1024features.csv

  • Features of Autoencoder: embeddings_autoencoder_1024features.csv

All labels used to train the models can be found in the folder: Dengue_dataset/

  • Labels with dengue cases per inhabitans for regression: cases_per_inhabitants.csv
  • Labels with peak or not peak of dengue for binary classification: binary_classes.csv
  • Labels with increase, decrease or stable dengue cases across weeks for multi-class classification: multiclass_labels.csv
  • Labels with dengue cases across weeks and other sociodemographic/socioeconomic variables per municipality: dengue_data_all_municipalities.csv

Machine Learning models with the dataset:

  1. LSTM for regression of dengue cases using the embeddigns.

  2. LSTM for multiclass classification using the emebeddings.

  3. Binary classification + Contrastive learning.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%