✨ NovelAI api python sdk with Pydantic, modern and user-friendly.
The goal of this repository is to use Pydantic to build legitimate requests to access the NovelAI API service.
Python >= 3.9 is required.
- Image Generation Model Release — NovelAI Anime Diffusion V4 Curated Preview (EN)
- Tutorial: Creating Consistent Characters with NovelAI Diffusion Anime [Female]
pip -U install novelai-python
All API users must adhere to the NovelAI Terms of Service: https://novelai.net/terms.
More examples can be found in the playground directory, read code as documentation.
import asyncio
import os
from dotenv import load_dotenv
from pydantic import SecretStr
from novelai_python import GenerateImageInfer, ImageGenerateResp, ApiCredential
from novelai_python.sdk.ai.generate_image import Model, Character, Sampler, UCPreset
from novelai_python.sdk.ai.generate_image.schema import PositionMap
load_dotenv()
session = ApiCredential(api_token=SecretStr(os.getenv("NOVELAI_JWT"))) # pst-***
# For security reasons, storing user credentials in plaintext is strongly discouraged.
prompt = "2girls, fisheye, closeup, from above"
async def main():
gen = GenerateImageInfer.build_generate(
prompt=prompt,
model=Model.NAI_DIFFUSION_4_CURATED_PREVIEW,
character_prompts=[
Character(
prompt="1girl, head tilt, short hair, black hair, grey eyes, small breasts, looking at viewer",
uc="red hair",
center=PositionMap.B2
),
Character(
prompt="1girl, fox ears, fox tail, white hair, white tail, white ears",
uc="black hair",
center=PositionMap.D2
)
],
sampler=Sampler.K_EULER_ANCESTRAL,
ucPreset=UCPreset.TYPE0,
# Recommended, using preset negative_prompt depends on selected model
qualityToggle=True,
decrisp_mode=False,
variety_boost=True,
# Checkbox in novelai.net
)
cost = gen.calculate_cost(is_opus=True)
print(f"charge: {cost} if you are vip3")
resp = await gen.request(session=session)
resp: ImageGenerateResp
print(resp.meta)
file = resp.files[0]
with open(file[0], "wb") as f:
f.write(file[1])
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
import asyncio
import os
from dotenv import load_dotenv
from pydantic import SecretStr
from novelai_python import APIError, LoginCredential
from novelai_python.sdk.ai.generate import TextLLMModel, LLM, get_default_preset, AdvanceLLMSetting
from novelai_python.sdk.ai.generate._enum import get_model_preset
load_dotenv()
username = os.getenv("NOVELAI_USER", None)
assert username is not None
# credential = JwtCredential(jwt_token=SecretStr(jwt))
login_credential = LoginCredential(
username=os.getenv("NOVELAI_USER"),
password=SecretStr(os.getenv("NOVELAI_PASS"))
)
async def chat(prompt: str):
try:
model = TextLLMModel.ERATO # llama3
parameters = get_default_preset(model).parameters
agent = LLM.build(
prompt=prompt,
model=model,
# parameters=None, # Auto Select or get from preset
parameters=get_model_preset(TextLLMModel.ERATO).get_all_presets()[0].parameters, # Select from enum preset
advanced_setting=AdvanceLLMSetting(
min_length=1,
max_length=None, # Auto
)
)
# NOTE:parameter > advanced_setting, which logic in generate/__init__.py
# If you not pass the parameter, it will use the default preset.
# So if you want to set the generation params, you should pass your own params.
# Only if you want to use some params not affect the generation, you can use advanced_setting.
result = await agent.request(session=login_credential)
except APIError as e:
raise Exception(f"Error: {e.message}")
print(f"Result: \n{result.text}")
loop = asyncio.get_event_loop()
loop.run_until_complete(chat("Hello"))
from novelai_python.tool.random_prompt import RandomPromptGenerator
generator = RandomPromptGenerator()
for i in range(10):
print(generator.generate_common_tags(nsfw=False))
print(generator.generate_scene_tags())
print(generator.generate_scene_composition())
print(generator.get_holiday_themed_tags())
pip install novelai_python
python3 -m novelai_python.server -h '127.0.0.1' -p 7888
from novelai_python._enum import get_tokenizer_model, TextLLMModel, TextTokenizerGroup
from novelai_python.tokenizer import NaiTokenizer
# Through llm model name to get the tokenizer
tokenizer_package = NaiTokenizer(get_tokenizer_model(TextLLMModel.ERATO))
# Directly use the tokenizer
clip_tokenizer = NaiTokenizer(TextTokenizerGroup.CLIP)
# Tokenize a text
t_text = "a fox jumped over the lazy dog"
encode_tokens = tokenizer_package.encode(t_text)
print(tokenizer_package.tokenize_text(t_text))
print(f"Tokenized text: {encode_tokens}")
print(tokenizer_package.decode(tokenizer_package.encode(t_text)))
- tool.random_prompt
- tool.paint_mask
- tool.image_metadata
- tokenizer
- /ai/generate-image
- /user/subscription
- /user/login
- /user/information
- /ai/upscale
- /ai/generate-image/suggest-tags
- /ai/generate-voice
- /ai/generate-stream
- /ai/generate
- /ai/augment-image
- /ai/annotate-image
- /ai/classify
- /ai/generate-prompt
GenerateImageInfer.calculate_cost is correct in most cases, but please request account information to get accurate consumption information.
This repo is maintained by me personally now. If you have any questions, please feel free to open an issue.
You might need some solutions for identifying NSFW content and adding a mosaic to prevent operational mishaps.
https://dghs-imgutils.deepghs.org/main/api_doc/detect/nudenet.html
https://dghs-imgutils.deepghs.org/main/api_doc/operate/censor.html