Detection of statistically enriched patterns in protein sequence data sets.
Due to recent changes in our server infrastructure, we want to make you aware of some current limitations in our email notification system:
- System memory constraints may occasionally prevent email notifications from being sent, even when your analysis is completed successfully
- Result files exceeding 15MB cannot be sent via email, resulting in no email or notifications indicating this issue.
We have identified additional issues with timeout and error processes when using non-human or isoform FASTA files. If your analysis requires custom FASTA files, this functionality is temporarily unavailable.
We understand these limitations may impact your workflow, and we're actively working on solutions. A new standalone version is being developed to address these constraints and provide more reliable notifications.
Thank you for your patience and understanding as we improve our service.
Lange Lab - Dec 2024
The local sequence context is the most fundamental feature determining proteins' post-translational modification (PTM). Recent technological improvements allow for the detection of new and less prevalent modifications. We found that established state-of-the-art algorithms for the detection of PTM motifs in complex datasets failed to keep up with this technological development and are no longer robust. To overcome this limitation, we developed RoLiM, a new linear motif deconvolution algorithm and a web server that enables robust and unbiased identification of local amino acid sequence determinants in complex biological systems.
For convenient use, we provide a web frontend accessible at http://langelab.org/rolim
If preferred, RoLiM can also be installed locally, but the software has not been designed to ease local installation and use.
The webfrontent includes detailed explanations for all options and parameters as well as example datasets for download.
Example data 1:
prealigned sequence list (http://langelab.org/rolim/textfile)
HPKPKQFSSFEKRAK
DVATSPISPTENNTT
DLQEVLSSDENGGTY
EPDHYRYSDTTDSDP
TETRSSSSESSHSSS
GDDEDACSDTEATEA
DPEKFADSDQDRDPH
PEPSTKVSEEAESQQ
DVHMVSDSDGDDFED
EGASLELSDDDTESK
FLWSPFESLCEIGEK
NSYSGSNSGAAIGWG
GEYRSLESDNEEKAF
SSGSASKSDKDLETQ
EGRGEVGSAGDMRAA
EDLVDSLSEGDAYPN
EASHSGGSGDEAPKL
KGATKESSEKDRGRD
TPEELDDSDFETEDF
EVVGGDDSDGLRAED
KRSRAIHSSDEGEDQ
PASCPLDSDLSEDED
TDNLLPMSPEEFDEV
RSDVESSSEEEDVTT
DEEDLVDSLSEGDAY
SPDIDNYSEEEEESF
FKLFHPSSESEQGLT
SKGVDFESSEDDDDD
SMGLYMDSVRDADYS
STEQTLASDTDSSLD
PGETPPLSPIDMESQ
PGPQSPGSPLEEERQ
ESQDSSDSIGSSQKA
QKQEPLGSDSEGVNC
KDSSHYDSDGDKSDD
ASLSSLNSSESDKDQ
SADAANGSNEDRGEV
FHYRTLHSDDEGTVL
DDDDDDNSDEEDNDD
PGLQAADSDDEDLDD
IGDLVLDSDEEENGQ
IYPWMRSSGTDRKRG
DEELEGISPDELKDE
TSSYLSDSGSTGEHT
NSEASNASETESDHR
CPLDSDLSEDEDLQL
ITDVHMVSDSDGDDF
QMEKDIRSDVEESDS
PFAFNLNSDTDVEEG
QIRLRRDSKEANARR
Example Data 2:
peptide list with optional protein identifiers (http://langelab.org/rolim/peptidelist)
VLYDVQELR P09525
SLVINYDLPTNR Q14240
DALGLNIYEQNDR P26038
KLGIHEDSQNR P07900
LATQLTGPVMPVR P26373
ASSNESLVVNR P42167
VVYGGADIGQQIR O00571
AGDEIDEPSER Q96ME7
SLGSALRPSTSR P08670
QASQGTLQTR P78527
NYGPMKSGNFGGSR P22626
SELAGHQTSAESWGTGR P36578
SSVSDFNQNFEVPNR P41218
AAQSGILDR Q9Y6N5
SGKASSAAGLTAAVVR Q14566
GDIIIDGGNSEYR P52209
SSLAEGSVTSVGSVNPAENFR P13010
ADLQNDEVAFR P61247
EVDNELR Q9Y3Z3
GEKDIPGLTDTTVPR P62753
EVDNELR Q9Y3Z3
GEKDIPGLTDTTVPR P62753
EGADNQGAGEQGR P67809
MVQAEEAAAEITR O00567
TEQGAELSNEER P63104
QNSESGEKNEGSESAPEGQAQQR P67809
SADDTPEVLNR O95674
GGIKEDTEEHHLR P09651
VSGVCVQTETVLR P13639
NMACYCR P59665
NMVPFPR P07437
KAEPVEVVAPR P09874
TDESLR P09651
ALDTKGPEIR P14618
SNLNPER P26599
NDGEVDDEEDEEELGEEER P39687
AASEFFR P06733
SVVDLTCR P04406
ILPPTRPTDKPLR Q05639
VVCPKDEDYKQR Q00839
VLYDVQELR P09525
SLVINYDLPTNR Q14240
DALGLNIYEQNDR P26038
KLGIHEDSQNR P07900
LATQLTGPVMPVR P26373
ASSNESLVVNR P42167
VVYGGADIGQQIR O00571
AGDEIDEPSER Q96ME7
SLGSALRPSTSR P08670
QASQGTLQTR P78527
- Download one of the provided demo datasets
- Enter your email, a short name and optional description and select the downloaded dataset as "Foreground dataset"
- Select the appropriate foreground dataset format
- Select the species for the background dataset ('Human')
- Leave all parameters in default setting and
Submit job
Processing of the data by the server takes usually a few minutes or less and results as well as error messages will be sent to the provided email address. If the server is working on a long queue of submissions or the submitted dataset is particularly extensive or complex processing time can be considrably longer.
Once completed you will receive an email with an .zip archive and the following content and folder structure:
- summary
-- log.txt | summary of all parameters and options
-- sequence_clustermap.svg | a hierarchically clustered heatmap of all provided sequences matched to the identified linear motifs / patterns
- patterns
-- pattern_summary_table.csv | tabular summary of all patterns and their respective sample and foregroundand frequencies and enrichement
-- for each enriched pattern:
-- pattern_sequences.txt | a list of all submitted sequences matching to a pattern
-- pattern_log_map.pdf | a weblogo representation of all submitted sequences matching to a pattern
Currently under review
- Add pre-computed backgrounds for species other than homo sapiens
- Add easy to interpret error messages in addition to the provided trace back.
- Improve handling of some non-sensical parameter combinations to avoid failed submissions
- Improve support for Safari web browsers
If you have any feedback or suggestions, please reach out or open an issue on github.
amqp==2.4.1
backcall==0.1.0
billiard==3.5.0.5
celery==4.2.1
Click==7.0
cycler==0.10.0
decorator==4.3.2
Django==2.1.5
django-filter==2.1.0
django-rq==2.0
djangorestframework==3.9.1
gunicorn==19.9.0
ipykernel==5.1.0
ipython==7.2.0
ipython-genutils==0.2.0
jedi==0.13.2
jupyter-client==5.2.4
jupyter-core==4.4.0
kiwisolver==1.0.1
kombu==4.3.0
Markdown==3.0.1
matplotlib==3.0.2
matplotlib-venn==0.11.5
mysqlclient==1.4.2
numpy==1.16.1
pandas==0.24.1
parso==0.3.4
pexpect==4.6.0
pickleshare==0.7.5
prompt-toolkit==2.0.8
ptyprocess==0.6.0
Pygments==2.3.1
PyMySQL==0.9.3
pyparsing==2.3.1
python-dateutil==2.8.0
pytz==2018.9
pyzmq==17.1.2
redis==3.2.1
rq==1.0
scipy==1.2.0
seaborn==0.9.0
setuptools-scm==3.2.0
six==1.12.0
tornado==5.1.1
traitlets==4.3.2
vine==1.2.0
wcwidth==0.1.7
weblogo==3.7.1