Codebase containing the scripts of training/testing of the proposed VRU-Net for Human Pose Estimation. More details about the project can be found in this report.
- Download the COCO training data from here and unzip it in
$Root/Data/COCO/
. - Download the COCO validation data from here and unzip it in
$Root/Data/COCO/
. - Download the annotations file from here and unzip it in
$Root/Data/COCO/annotations/
. - Install the packages written in
$Root/required packages.txt
.
After doing the above setup the directory should look like:
$Root
├── Data
│ ├── COCO
│ │ ├── Annotations
| | | ├── person_keypoints_train2017.json
| | | └── person_keypoints_val2017.json
| | ├── train2017
| | | ├── img1.jpg
| | | ├── img2.jpg
| | | └── ...
| | └── val2017
| | ├── img1.jpg
| | ├── img2.jpg
| | └── ...
| └── VRU
│ ├── Annotations
| | ├── bbox.json
| | └── vru_keypoints_val.json
| └── images
| └── val
| ├── img1.jpg
| ├── img2.jpg
| └── ...
├── pics/
├── runs/
├── trained_models/
├── Data_Loader.ipynb
├── Data_Loader.py
├── Inference.ipynb
├── Modify_annotations.ipynb
├── Modify_annotations.py
├── model.ipynb
├── model.py
├── required_packages.txt
├── train.ipynb
└── .gitignore
- Make sure that
setup
is done and the files are placed as inDirectory Structure
. - Modify the hyperparameters in the second block of
train.ipynb
. - Run the Notebook
train.ipynb
- Download the pretrained model from google drive and place it in
trained_models
. - Run
Inference.ipynb
.
Note : The model was trained for only half an epoch so the results are primitive.
- Add inference code.
- Add results.
- Add training and validation curve.
- Add code for extracting the final keypoint location from the predicted heatmap.
- Add network architecture diagram.