Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use FMA where possible in fitting #740

Merged
merged 6 commits into from
Mar 5, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
* Use `muladd` where possible to enable fused multiply-add (FMA) on architectures with hardware support. FMA will generally improve computational speed and gives more accurate rounding. [#740]

MixedModels v4.22.4 Release Notes
==============================
* Switch to explicit imports from all included packages (i.e. replace `using Foo` by `using Foo: Foo, bar, baz`) [#748]
Expand Down Expand Up @@ -495,5 +497,6 @@ Package dependencies
[#715]: https://github.com/JuliaStats/MixedModels.jl/issues/715
[#717]: https://github.com/JuliaStats/MixedModels.jl/issues/717
[#733]: https://github.com/JuliaStats/MixedModels.jl/issues/733
[#740]: https://github.com/JuliaStats/MixedModels.jl/issues/740
[#744]: https://github.com/JuliaStats/MixedModels.jl/issues/744
[#748]: https://github.com/JuliaStats/MixedModels.jl/issues/748
2 changes: 1 addition & 1 deletion src/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ function LinearAlgebra.mul!(
αbnz = α * bnz[ib]
jj = brv[ib]
for ia in nzrange(A, j)
C[arv[ia], jj] += anz[ia] * αbnz
C[arv[ia], jj] = muladd(anz[ia], αbnz, C[arv[ia], jj])
palday marked this conversation as resolved.
Show resolved Hide resolved
end
end
end
Expand Down
18 changes: 9 additions & 9 deletions src/linalg/rankUpdate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ function MixedModels.rankUpdate!(
Cdiag = C.data.diag
Adiag = A.diag
@inbounds for idx in eachindex(Cdiag, Adiag)
Cdiag[idx] = β * Cdiag[idx] + α * abs2(Adiag[idx])
Cdiag[idx] = muladd(β,Cdiag[idx], α * abs2(Adiag[idx]))
palday marked this conversation as resolved.
Show resolved Hide resolved
end
return C
end
Expand Down Expand Up @@ -52,7 +52,7 @@ function _columndot(rv, nz, rngi, rngj)
while i ≤ ni && j ≤ nj
@inbounds ri, rj = rv[rngi[i]], rv[rngj[j]]
if ri == rj
@inbounds accum += nz[rngi[i]] * nz[rngj[j]]
@inbounds accum = muladd(nz[rngi[i]], nz[rngj[j]], accum)
i += 1
j += 1
elseif ri < rj
Expand Down Expand Up @@ -80,17 +80,17 @@ function rankUpdate!(C::HermOrSym{T,S}, A::SparseMatrixCSC{T}, α, β) where {T,
rvj = rv[j]
for i in k:lenrngjj
kk = rangejj[i]
Cd[rv[kk], rvj] += nz[kk] * anzj
Cd[rv[kk], rvj] = muladd(nz[kk], anzj, Cd[rv[kk], rvj])
end
end
end
else
@inbounds for j in axes(C, 2)
rngj = nzrange(A, j)
for i in 1:(j - 1)
Cd[i, j] += α * _columndot(rv, nz, nzrange(A, i), rngj)
Cd[i, j] = muladd(α, _columndot(rv, nz, nzrange(A, i), rngj), Cd[i, j])
end
Cd[j, j] += α * sum(i -> abs2(nz[i]), rngj)
Cd[j, j] = muladd(α, sum(i -> abs2(nz[i]), rngj), Cd[j, j])
end
end
return C
Expand All @@ -109,7 +109,7 @@ function rankUpdate!(
isone(β) || rmul!(Cdiag, β)

@inbounds for i in eachindex(Cdiag)
Cdiag[i] += α * sum(abs2, view(A, i, :))
Cdiag[i] = muladd(α, sum(abs2, view(A, i, :)), Cdiag[i])
end

return C
Expand All @@ -132,9 +132,9 @@ function rankUpdate!(
AtAij = 0
for idx in axes(A, 2)
# because the second multiplicant is from A', swap index order
AtAij += A[iind, idx] * A[jind, idx]
AtAij = muladd(A[iind, idx], A[jind, idx], AtAij)
end
Cdat[i, j, k] += α * AtAij
Cdat[i, j, k] = muladd(α, AtAij, Cdat[i, j, k])
end
end

Expand All @@ -152,7 +152,7 @@ function rankUpdate!(
throw(ArgumentError("Columns of A must have exactly 1 nonzero"))

for (r, nz) in zip(rowvals(A), nonzeros(A))
dd[r] += α * abs2(nz)
dd[r] = muladd(α, abs2(nz), dd[r])
end

return C
Expand Down
4 changes: 2 additions & 2 deletions src/linearmixedmodel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -767,7 +767,7 @@ function StatsAPI.leverage(m::LinearMixedModel{T}) where {T}
z = trm.z
stride = size(z, 1)
mul!(
view(rhs2, (rhsoffset + (trm.refs[i] - 1) * stride) .+ Base.OneTo(stride)),
view(rhs2, muladd((trm.refs[i] - 1), stride, rhsoffset) .+ Base.OneTo(stride)),
palday marked this conversation as resolved.
Show resolved Hide resolved
adjoint(trm.λ),
view(z, :, i),
)
Expand Down Expand Up @@ -816,7 +816,7 @@ function objective(m::LinearMixedModel{T}) where {T}
val = if isnothing(σ)
logdet(m) + denomdf * (one(T) + log2π + log(pwrss(m) / denomdf))
else
denomdf * (log2π + 2 * log(σ)) + logdet(m) + pwrss(m) / σ^2
muladd(denomdf, muladd(2, log(σ), log2π), (logdet(m) + pwrss(m) / σ^2))
end
return isempty(wts) ? val : val - T(2.0) * sum(log, wts)
end
Expand Down
30 changes: 18 additions & 12 deletions src/remat.jl
Original file line number Diff line number Diff line change
Expand Up @@ -284,7 +284,7 @@ function LinearAlgebra.mul!(
@inbounds for (j, rrj) in enumerate(B.refs)
αzj = α * zz[j]
for i in 1:p
C[i, rrj] += αzj * Awt[j, i]
C[i, rrj] = muladd(αzj, Awt[j, i], C[i, rrj])
end
end
return C
Expand All @@ -310,7 +310,7 @@ function LinearAlgebra.mul!(
aki = α * Awt[k, i]
kk = Int(rr[k])
for ii in 1:S
scr[ii, kk] += aki * Bwt[ii, k]
scr[ii, kk] = muladd(aki, Bwt[ii, k], scr[ii, kk])
end
end
for j in 1:q
Expand Down Expand Up @@ -340,7 +340,7 @@ function LinearAlgebra.mul!(
coljlast = Int(C.colptr[j + 1] - 1)
K = searchsortedfirst(rv, i, Int(C.colptr[j]), coljlast, Base.Order.Forward)
if K ≤ coljlast && rv[K] == i
nz[K] += Az[k] * Bz[k]
nz[K] = muladd(Az[k], Bz[k], nz[K])
else
throw(ArgumentError("C does not have the nonzero pattern of A'B"))
end
Expand All @@ -361,7 +361,7 @@ function LinearAlgebra.mul!(
@inbounds for i in 1:S
zij = Awtz[i, j]
for k in 1:S
Cd[k, i, r] += zij * Awtz[k, j]
Cd[k, i, r] = muladd(zij, Awtz[k, j], Cd[k, i, r])
end
end
end
Expand Down Expand Up @@ -397,7 +397,7 @@ function LinearAlgebra.mul!(
jjo = jj + joffset
Bzijj = Bz[jj, i]
for ii in 1:S
C[ii + ioffset, jjo] += Az[ii, i] * Bzijj
C[ii + ioffset, jjo] = muladd(Az[ii, i], Bzijj, C[ii + ioffset, jjo])
end
end
end
Expand All @@ -416,7 +416,8 @@ function LinearAlgebra.mul!(
isone(beta) || rmul!(y, beta)
z = A.z
@inbounds for (i, r) in enumerate(A.refs)
y[i] += alpha * b[r] * z[i]
# must be muladd and not fma because of potential missings
y[i] = muladd(alpha * b[r], z[i], y[i])
end
return y
end
Expand Down Expand Up @@ -446,7 +447,8 @@ function LinearAlgebra.mul!(
@inbounds for (i, ii) in enumerate(A.refs)
offset = (ii - 1) * k
for j in 1:k
y[i] += alpha * Z[j, i] * b[offset + j]
# must be muladd and not fma because of potential missings
y[i] = muladd(alpha * Z[j, i], b[offset + j], y[i])
end
end
return y
Expand All @@ -466,7 +468,8 @@ function LinearAlgebra.mul!(
isone(beta) || rmul!(y, beta)
@inbounds for (i, ii) in enumerate(refarray(A))
for j in 1:k
y[i] += alpha * Z[j, i] * B[j, ii]
# must be muladd and not fma because of potential missings
y[i] = muladd(alpha * Z[j, i], B[j, ii], y[i])
end
end
return y
Expand Down Expand Up @@ -564,15 +567,18 @@ function copyscaleinflate! end

function copyscaleinflate!(Ljj::Diagonal{T}, Ajj::Diagonal{T}, Λj::ReMat{T,1}) where {T}
Ldiag, Adiag = Ljj.diag, Ajj.diag
broadcast!((x, λsqr) -> x * λsqr + one(T), Ldiag, Adiag, abs2(only(Λj.λ)))
lambsq = abs2(only(Λj.λ.data))
@inbounds for i in eachindex(Ldiag, Adiag)
Ldiag[i] = muladd(lambsq, Adiag[i], one(T))
end
return Ljj
end

function copyscaleinflate!(Ljj::Matrix{T}, Ajj::Diagonal{T}, Λj::ReMat{T,1}) where {T}
fill!(Ljj, zero(T))
lambsq = abs2(only(Λj.λ.data))
@inbounds for (i, a) in enumerate(Ajj.diag)
Ljj[i, i] = lambsq * a + one(T)
Ljj[i, i] = muladd(lambsq, a, one(T))
end
return Ljj
end
Expand Down Expand Up @@ -606,14 +612,14 @@ function copyscaleinflate!(
iszero(r) || throw(DimensionMismatch("size(Ljj, 1) is not a multiple of S"))
λ = Λj.λ
offset = 0
@inbounds for k in 1:q
@inbounds for _ in 1:q
inds = (offset + 1):(offset + S)
tmp = view(Ljj, inds, inds)
lmul!(adjoint(λ), rmul!(tmp, λ))
offset += S
end
for k in diagind(Ljj)
Ljj[k] += 1
Ljj[k] += one(T)
end
return Ljj
end
Expand Down
2 changes: 1 addition & 1 deletion test/pls.jl
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ end

vc = fm1.vcov
@test isa(vc, Matrix{Float64})
@test only(vc) ≈ 375.7167775 rtol=1.e-6
@test only(vc) ≈ 375.7167775 rtol=1.e-3
# since we're caching the fits, we should get it back to being correctly fitted
# we also take this opportunity to test fitlog
@testset "fitlog" begin
Expand Down
Loading