Skip to content

Commit

Permalink
Aggregate documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions committed Apr 19, 2024
1 parent 825db27 commit fb5efb8
Show file tree
Hide file tree
Showing 13 changed files with 13 additions and 13 deletions.
2 changes: 1 addition & 1 deletion Home/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.8.5","generation_timestamp":"2024-04-12T12:28:45","documenter_version":"1.3.0"}}
{"documenter":{"julia_version":"1.8.5","generation_timestamp":"2024-04-19T12:28:52","documenter_version":"1.4.0"}}
2 changes: 1 addition & 1 deletion Home/ecosystem/mission/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion Home/ecosystem/roadmap/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion Home/encyclopedia/astro/frames/iers/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -53,4 +53,4 @@
\Delta\psi &= \Delta\psi_{2000A} + (0.4697 \times 10^{-6} + f)\Delta\psi_{2000A} \\
\Delta\epsilon &= (1+f)\Delta\epsilon_{2000A} \\
\end{aligned}
\end{equation*}\]</p><p>where <span>$f = -2.774 \times 10^{-6}t$</span> account for Earth's <span>$J_2$</span> rate effect, which was not taken into account in IAU 2000. Additional small changes to the nutation in longitude amplitudes are required to ensure compatibility with teh IAU 2006 values for <span>$\epsilon_0$</span>. </p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The coefficients for <span>$\Delta\psi_{2000A}$</span> and <span>$\Delta\epsilon_{2000A}$</span> available from the IERS tables already account for the amplitude change in longitude, whereas the SOFA function <em>nut00a</em> equals the original IAU 2000A series. </p></div></div><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The SOFA implementation of the IAU 2000A nutation takes</p></div></div><h4 id="Fundamental-Arguments"><a class="docs-heading-anchor" href="#Fundamental-Arguments">Fundamental Arguments</a><a id="Fundamental-Arguments-1"></a><a class="docs-heading-anchor-permalink" href="#Fundamental-Arguments" title="Permalink"></a></h4><p>The fundamental arguments of the nutation theory are a set of parameters that account for luni-solar and planetary nutation contributions. The former, also known as <em>Delaunay arguments</em> are the mean anomalies for the Moon and Sun, <span>$l$</span> and <span>$l'$</span>, the mean argument of latitude of the Moon, <span>$F$</span>, measured on the ecliptic from the mean equinox of date, the mean elongation from the Sun <span>$D$</span>, and the right ascension of the ascending node of the mean lunar orbit, <span>$\Omega$</span>, measured along the ecliptic from the mean equinox of date. The arguments to compute the corrections for the planetary effects on the nutation and the obliquity of the ecliptic are the mean Heliocentric longitudes of the planets (<span>$\lambda_i$</span>), and the general precession in longitude (<span>$p_\lambda$</span>). The numerical expressions of these arguments are available on the IERS Conventions 2010. </p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The original fundamental arguments are function of time <span>$t$</span> measured in TDB. However, changes in the nutation amplitudes resulting from the difference TDB-TT are responsible for a difference in the CIP location that is less than 0.01 <span>$\mu\text{as}$</span>, which is significantly below the required microarcseconds accuracy. Therefore, in pratice, TT is often used in place of TDB.</p></div></div><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The SOFA library, which provides standard routines and algorithms for fundamental astronomy, follows a strict compliance with the MHB2000 code for the IAU 2000A nutation model. As a consequence, simplified and slightly different expressions for the Delaunay variables and the longitude of Neptune are used. However, the maximum differences caused by this divergence are about 0.013 <span>$\mu\text{as}$</span> after one century. </p></div></div><h4 id="References-2"><a class="docs-heading-anchor" href="#References-2">References</a><a class="docs-heading-anchor-permalink" href="#References-2" title="Permalink"></a></h4><ol><li>Lieske, J. H. et al. (1977), <em>Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants</em><a href="https://ui.adsabs.harvard.edu/abs/1977A%26A....58....1L/abstract">Full Text Source</a></li><li>Seidelmann, P. K. (1982), <em>1980 IAU Theory of Nutation: The Final report of the IAU Working Group on Nutation</em><a href="https://link.springer.com/article/10.1007/BF01228952">DOI: 10.1007/BF01228952</a></li><li>Mathews, P. M. et al. (2002), <em>Modeling of nutation and precession: New nutation series for nonrigid Earth, and insights into the Earth's Interior</em><a href="https://doi.org/10.1029/2001JB000390">DOI: 10.1029/2001JB000390</a></li><li>McCarthy, D. D. and Luzum, B. J. (2003), <em>An Abridged Model of the Precession-Nutation of the Celestial Pole</em><a href="https://link.springer.com/article/10.1023/A:1021762727016">DOI: 10.1023/A:1021762727016</a></li><li>Capitaine, N. et al. (2003c), <em>Expressions for IAU 2000 precession quantities</em><a href="https://doi.org/10.1051/0004-6361:20031539">DOI: 10.1051/0004-6361:20031539</a></li><li>Lambert, S. and Bizouard C. (2002), <em>Positioning the Terrestrial Ephemeris Origin in the Terrestrial Reference Frame</em>, <a href="https://www.aanda.org/articles/aa/pdf/2002/40/aa2747.pdf">DOI: 10.1051/0004-6361:20021139</a></li><li>Luzum, B. and Petit G. (2012). <em>The IERS Conventions (2010)</em>, <a href="https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html">IERS Technical Note No. 36</a></li><li>Capitaine, N. and Wallace P.T. (2006), <em>High precision methods for locating the celestial intermediate pole and origin</em><a href="https://www.aanda.org/articles/aa/abs/2006/17/aa4550-05/aa4550-05.html">DOI: 10.1051/0004-6361:20054550 </a></li><li>Wallace P.T. and Capitaine N. (2006), <em>Precession-nutation procedures consistent with IAU 2006 resolutions</em></li><li>Vallado D. <em>Fundamentals of Astrodynamics</em></li></ol></article><nav class="docs-footer"><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label></p><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div><p></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Friday 12 April 2024 12:28">Friday 12 April 2024</span>. Using Julia version 1.8.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></HTML>
\end{equation*}\]</p><p>where <span>$f = -2.774 \times 10^{-6}t$</span> account for Earth's <span>$J_2$</span> rate effect, which was not taken into account in IAU 2000. Additional small changes to the nutation in longitude amplitudes are required to ensure compatibility with teh IAU 2006 values for <span>$\epsilon_0$</span>. </p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The coefficients for <span>$\Delta\psi_{2000A}$</span> and <span>$\Delta\epsilon_{2000A}$</span> available from the IERS tables already account for the amplitude change in longitude, whereas the SOFA function <em>nut00a</em> equals the original IAU 2000A series. </p></div></div><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The SOFA implementation of the IAU 2000A nutation takes</p></div></div><h4 id="Fundamental-Arguments"><a class="docs-heading-anchor" href="#Fundamental-Arguments">Fundamental Arguments</a><a id="Fundamental-Arguments-1"></a><a class="docs-heading-anchor-permalink" href="#Fundamental-Arguments" title="Permalink"></a></h4><p>The fundamental arguments of the nutation theory are a set of parameters that account for luni-solar and planetary nutation contributions. The former, also known as <em>Delaunay arguments</em> are the mean anomalies for the Moon and Sun, <span>$l$</span> and <span>$l'$</span>, the mean argument of latitude of the Moon, <span>$F$</span>, measured on the ecliptic from the mean equinox of date, the mean elongation from the Sun <span>$D$</span>, and the right ascension of the ascending node of the mean lunar orbit, <span>$\Omega$</span>, measured along the ecliptic from the mean equinox of date. The arguments to compute the corrections for the planetary effects on the nutation and the obliquity of the ecliptic are the mean Heliocentric longitudes of the planets (<span>$\lambda_i$</span>), and the general precession in longitude (<span>$p_\lambda$</span>). The numerical expressions of these arguments are available on the IERS Conventions 2010. </p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The original fundamental arguments are function of time <span>$t$</span> measured in TDB. However, changes in the nutation amplitudes resulting from the difference TDB-TT are responsible for a difference in the CIP location that is less than 0.01 <span>$\mu\text{as}$</span>, which is significantly below the required microarcseconds accuracy. Therefore, in pratice, TT is often used in place of TDB.</p></div></div><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>The SOFA library, which provides standard routines and algorithms for fundamental astronomy, follows a strict compliance with the MHB2000 code for the IAU 2000A nutation model. As a consequence, simplified and slightly different expressions for the Delaunay variables and the longitude of Neptune are used. However, the maximum differences caused by this divergence are about 0.013 <span>$\mu\text{as}$</span> after one century. </p></div></div><h4 id="References-2"><a class="docs-heading-anchor" href="#References-2">References</a><a class="docs-heading-anchor-permalink" href="#References-2" title="Permalink"></a></h4><ol><li>Lieske, J. H. et al. (1977), <em>Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants</em><a href="https://ui.adsabs.harvard.edu/abs/1977A%26A....58....1L/abstract">Full Text Source</a></li><li>Seidelmann, P. K. (1982), <em>1980 IAU Theory of Nutation: The Final report of the IAU Working Group on Nutation</em><a href="https://link.springer.com/article/10.1007/BF01228952">DOI: 10.1007/BF01228952</a></li><li>Mathews, P. M. et al. (2002), <em>Modeling of nutation and precession: New nutation series for nonrigid Earth, and insights into the Earth's Interior</em><a href="https://doi.org/10.1029/2001JB000390">DOI: 10.1029/2001JB000390</a></li><li>McCarthy, D. D. and Luzum, B. J. (2003), <em>An Abridged Model of the Precession-Nutation of the Celestial Pole</em><a href="https://link.springer.com/article/10.1023/A:1021762727016">DOI: 10.1023/A:1021762727016</a></li><li>Capitaine, N. et al. (2003c), <em>Expressions for IAU 2000 precession quantities</em><a href="https://doi.org/10.1051/0004-6361:20031539">DOI: 10.1051/0004-6361:20031539</a></li><li>Lambert, S. and Bizouard C. (2002), <em>Positioning the Terrestrial Ephemeris Origin in the Terrestrial Reference Frame</em>, <a href="https://www.aanda.org/articles/aa/pdf/2002/40/aa2747.pdf">DOI: 10.1051/0004-6361:20021139</a></li><li>Luzum, B. and Petit G. (2012). <em>The IERS Conventions (2010)</em>, <a href="https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html">IERS Technical Note No. 36</a></li><li>Capitaine, N. and Wallace P.T. (2006), <em>High precision methods for locating the celestial intermediate pole and origin</em><a href="https://www.aanda.org/articles/aa/abs/2006/17/aa4550-05/aa4550-05.html">DOI: 10.1051/0004-6361:20054550 </a></li><li>Wallace P.T. and Capitaine N. (2006), <em>Precession-nutation procedures consistent with IAU 2006 resolutions</em></li><li>Vallado D. <em>Fundamentals of Astrodynamics</em></li></ol></article><nav class="docs-footer"><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label></p><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div><p></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.0 on <span class="colophon-date" title="Friday 19 April 2024 12:28">Friday 19 April 2024</span>. Using Julia version 1.8.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></HTML>
Loading

0 comments on commit fb5efb8

Please sign in to comment.