Skip to content

Commit

Permalink
Fix typo in intro example (#379)
Browse files Browse the repository at this point in the history
* Fix typo in intro example

See #378

* Replace constant with variable
  • Loading branch information
willtebbutt authored Sep 25, 2023
1 parent 92456df commit 083c772
Showing 1 changed file with 13 additions and 12 deletions.
25 changes: 13 additions & 12 deletions examples/0-intro-1d/script.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,17 +65,18 @@ f = GP(Matern52Kernel())
#md nothing #hide

# We create a finite dimensional projection at the inputs of the training dataset
# observed under Gaussian noise with variance $\sigma^2 = 0.1$, and compute the
# observed under Gaussian noise with variance $noise_var = 0.1$, and compute the
# log-likelihood of the outputs of the training dataset.

fx = f(x_train, 0.1)
noise_var = 0.1
fx = f(x_train, noise_var)
logpdf(fx, y_train)

# We compute the posterior Gaussian process given the training data, and calculate the
# log-likelihood of the test dataset.

p_fx = posterior(fx, y_train)
logpdf(p_fx(x_test), y_test)
logpdf(p_fx(x_test, noise_var), y_test)

# We plot the posterior Gaussian process (its mean and a ribbon of 2 standard deviations
# around it) on a grid along with the observations.
Expand Down Expand Up @@ -111,7 +112,7 @@ function gp_loglikelihood(x, y)
kernel =
softplus(params[1]) * (Matern52Kernel() ScaleTransform(softplus(params[2])))
f = GP(kernel)
fx = f(x, 0.1)
fx = f(x, noise_var)
return logpdf(fx, y)
end
return loglikelihood
Expand Down Expand Up @@ -229,10 +230,10 @@ vline!(mean_samples'; linewidth=2)
function gp_posterior(x, y, p)
kernel = softplus(p[1]) * (Matern52Kernel() ScaleTransform(softplus(p[2])))
f = GP(kernel)
return posterior(f(x, 0.1), y)
return posterior(f(x, noise_var), y)
end

mean(logpdf(gp_posterior(x_train, y_train, p)(x_test), y_test) for p in samples)
mean(logpdf(gp_posterior(x_train, y_train, p)(x_test, noise_var), y_test) for p in samples)

# We sample 5 functions from each posterior GP given by the final 100 samples of kernel
# parameters.
Expand Down Expand Up @@ -385,7 +386,7 @@ function objective_function(x, y)
kernel =
softplus(params[1]) * (Matern52Kernel() ScaleTransform(softplus(params[2])))
f = GP(kernel)
fx = f(x, 0.1)
fx = f(x, noise_var)
z = logistic.(params[3:end])
approx = VFE(f(z, jitter))
return -elbo(approx, fx, y)
Expand Down Expand Up @@ -420,9 +421,9 @@ opt_kernel =
softplus(opt.minimizer[1]) *
(Matern52Kernel() ScaleTransform(softplus(opt.minimizer[2])))
opt_f = GP(opt_kernel)
opt_fx = opt_f(x_train, 0.1)
opt_fx = opt_f(x_train, noise_var)
ap = posterior(VFE(opt_f(logistic.(opt.minimizer[3:end]), jitter)), opt_fx, y_train)
logpdf(ap(x_test), y_test)
logpdf(ap(x_test, noise_var), y_test)

# We visualize the approximate posterior with optimized parameters.

Expand Down Expand Up @@ -460,7 +461,7 @@ function loss_function(x, y)
kernel =
softplus(params[1]) * (Matern52Kernel() ScaleTransform(softplus(params[2])))
f = GP(kernel)
fx = f(x, 0.1)
fx = f(x, noise_var)
return -logpdf(fx, y)
end
return negativelogmarginallikelihood
Expand Down Expand Up @@ -496,9 +497,9 @@ opt_kernel =
(Matern52Kernel() ScaleTransform(softplus(opt.minimizer[2])))

opt_f = GP(opt_kernel)
opt_fx = opt_f(x_train, 0.1)
opt_fx = opt_f(x_train, noise_var)
opt_p_fx = posterior(opt_fx, y_train)
logpdf(opt_p_fx(x_test), y_test)
logpdf(opt_p_fx(x_test, noise_var), y_test)

# We visualize the posterior with optimized parameters.

Expand Down

0 comments on commit 083c772

Please sign in to comment.