Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Run on TUM-VI #228

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,8 @@ build-*
*.so
*.a
*.so.*
.idea/
.vscode/
cmake-build-*/
result.txt
*.pyc
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,10 @@ using the TUM RGB-D / TUM monoVO format ([timestamp x y z qx qy qz qw] of the ca



#### 3.6 Evaluation
For the [TUM-VI dataset](https://vision.in.tum.de/data/datasets/visual-inertial-dataset) an evaluation script exists with `evaluation/tum-vi_run_all.py`. It runs many sequences multiple times and reports the median RMS ATE. Run `tum-vi_run_all.py -h` for usage instructions.



### 4 General Notes for Good Results

Expand Down
130 changes: 130 additions & 0 deletions evaluation/associate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
#!/usr/bin/python2
# Software License Agreement (BSD License)
#
# Copyright (c) 2013, Juergen Sturm, TUM
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of TUM nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Requirements:
# sudo apt-get install python-argparse

"""
The Kinect provides the color and depth images in an un-synchronized way. This means that the set of time stamps from the color images do not intersect with those of the depth images. Therefore, we need some way of associating color images to depth images.

For this purpose, you can use the ''associate.py'' script. It reads the time stamps from the rgb.txt file and the depth.txt file, and joins them by finding the best matches.
"""

import argparse
import sys
import os
import numpy


def read_file_list(filename,remove_bounds):
"""
Reads a trajectory from a text file.

File format:
The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched)
and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp.

Input:
filename -- File name

Output:
dict -- dictionary of (stamp,data) tuples

"""
file = open(filename)
data = file.read()
lines = data.replace(","," ").replace("\t"," ").split("\n")
if remove_bounds:
lines = lines[100:-100]
list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]
list = [(float(l[0]),l[1:]) for l in list if len(l)>1]
return dict(list)

def associate(first_list, second_list,offset,max_difference):
"""
Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim
to find the closest match for every input tuple.

Input:
first_list -- first dictionary of (stamp,data) tuples
second_list -- second dictionary of (stamp,data) tuples
offset -- time offset between both dictionaries (e.g., to model the delay between the sensors)
max_difference -- search radius for candidate generation

Output:
matches -- list of matched tuples ((stamp1,data1),(stamp2,data2))

"""
first_keys = first_list.keys()
second_keys = second_list.keys()
potential_matches = [(abs(a - (b + offset)), a, b)
for a in first_keys
for b in second_keys
if abs(a - (b + offset)) < max_difference]
potential_matches.sort()
matches = []
for diff, a, b in potential_matches:
if a in first_keys and b in second_keys:
first_keys.remove(a)
second_keys.remove(b)
matches.append((a, b))

matches.sort()
return matches

if __name__ == '__main__':

# parse command line
parser = argparse.ArgumentParser(description='''
This script takes two data files with timestamps and associates them
''')
parser.add_argument('first_file', help='first text file (format: timestamp data)')
parser.add_argument('second_file', help='second text file (format: timestamp data)')
parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true')
parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)
parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02)
args = parser.parse_args()

first_list = read_file_list(args.first_file)
second_list = read_file_list(args.second_file)

matches = associate(first_list, second_list,float(args.offset),float(args.max_difference))

if args.first_only:
for a,b in matches:
print("%f %s"%(a," ".join(first_list[a])))
else:
for a,b in matches:
print("%f %s %f %s"%(a," ".join(first_list[a]),b-float(args.offset)," ".join(second_list[b])))


246 changes: 246 additions & 0 deletions evaluation/evaluate_ate_scale.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@

#!/usr/bin/python2
# Modified by Raul Mur-Artal and Martin Wudenka
# Automatically compute the optimal scale factor for monocular VO/SLAM.

# Software License Agreement (BSD License)
#
# Copyright (c) 2013, Juergen Sturm, TUM
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of TUM nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Requirements:
# sudo apt-get install python-argparse

"""
This script computes the absolute trajectory error from the ground truth
trajectory and the estimated trajectory.
"""

import sys
import numpy
import argparse
import associate

def align(model,data):
"""Align two trajectories using the method of Horn (closed-form).

Input:
model -- first trajectory (3xn)
data -- second trajectory (3xn)

Output:
rot -- rotation matrix (3x3)
trans -- translation vector (3x1)
trans_error -- translational error per point (1xn)
"""


numpy.set_printoptions(precision=3,suppress=True)
model_zerocentered = model - model.mean(1)
data_zerocentered = data - data.mean(1)

W = numpy.zeros( (3,3) )
for column in range(model.shape[1]):
W += numpy.outer(model_zerocentered[:,column],data_zerocentered[:,column])
U,d,Vh = numpy.linalg.linalg.svd(W.transpose())
S = numpy.matrix(numpy.identity( 3 ))
if(numpy.linalg.det(U) * numpy.linalg.det(Vh)<0):
S[2,2] = -1
rot = U*S*Vh

rotmodel = rot*model_zerocentered
dots = 0.0
norms = 0.0

for column in range(data_zerocentered.shape[1]):
dots += numpy.dot(data_zerocentered[:,column].transpose(),rotmodel[:,column])
normi = numpy.linalg.norm(model_zerocentered[:,column])
norms += normi*normi

s = float(dots/norms)

transGT = data.mean(1) - s*rot * model.mean(1)
trans = data.mean(1) - rot * model.mean(1)

model_alignedGT = s*rot * model + transGT
model_aligned = rot * model + trans

alignment_errorGT = model_alignedGT - data
alignment_error = model_aligned - data

trans_errorGT = numpy.sqrt(numpy.sum(numpy.multiply(alignment_errorGT,alignment_errorGT),0)).A[0]
trans_error = numpy.sqrt(numpy.sum(numpy.multiply(alignment_error,alignment_error),0)).A[0]

return rot,transGT,trans_errorGT,trans,trans_error, s

def plot_traj(ax,stamps,traj,style,color,label):
"""
Plot a trajectory using matplotlib.

Input:
ax -- the plot
stamps -- time stamps (1xn)
traj -- trajectory (3xn)
style -- line style
color -- line color
label -- plot legend

"""
stamps.sort()
interval = numpy.median([s-t for s,t in zip(stamps[1:],stamps[:-1])])

x = []
y = []
last = stamps[0]
for i in range(len(stamps)):
if stamps[i]-last < 20*interval:
x.append(traj[i][0])
y.append(traj[i][1])
elif len(x)>0:
ax.plot(x,y,style,color=color,label=label)
ax.scatter(traj[i][0],traj[i][1],s=1,color=color)
label=""
x=[]
y=[]
last= stamps[i]
if len(x)>0:
ax.plot(x,y,style,color=color,label=label)


if __name__=="__main__":
# parse command line
parser = argparse.ArgumentParser(description='''
This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory.
''')
parser.add_argument('first_file', help='ground truth trajectory (format: timestamp tx ty tz qx qy qz qw)')
parser.add_argument('second_file', help='estimated trajectory (format: timestamp tx ty tz qx qy qz qw)')
parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)
parser.add_argument('--scale', help='scaling factor for the second trajectory (default: 1.0)',default=1.0)
parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 10000000 ns)',default=20000000)
parser.add_argument('--save', help='save aligned second trajectory to disk (format: stamp2 x2 y2 z2)')
parser.add_argument('--save_associations', help='save associated first and aligned second trajectory to disk (format: stamp1 x1 y1 z1 stamp2 x2 y2 z2)')
parser.add_argument('--plot', help='plot the first and the aligned second trajectory to an image (format: png)')
parser.add_argument('--verbose', help='print all evaluation data (otherwise, only the RMSE absolute translational error in meters after alignment will be printed)', action='store_true')
parser.add_argument('--verbose2', help='print scale error and RMSE absolute translational error in meters after alignment with and without scale correction', action='store_true')
args = parser.parse_args()

first_list = associate.read_file_list(args.first_file, False)
second_list = associate.read_file_list(args.second_file, False)

matches = associate.associate(first_list, second_list,float(args.offset),float(args.max_difference))

if len(matches)<2:
sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?")
first_xyz = numpy.matrix([[float(value) for value in first_list[a][0:3]] for a,b in matches]).transpose()
second_xyz = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for a,b in matches]).transpose()
dictionary_items = second_list.items()
sorted_second_list = sorted(dictionary_items)

second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in sorted_second_list[i][1][0:3]] for i in range(len(sorted_second_list))]).transpose() # sorted_second_list.keys()]).transpose()
rot,transGT,trans_errorGT,trans,trans_error, scale = align(second_xyz,first_xyz)

second_xyz_aligned = scale * rot * second_xyz + transGT
second_xyz_notscaled = rot * second_xyz + trans
second_xyz_notscaled_full = rot * second_xyz_full + trans
first_stamps = first_list.keys()
first_stamps.sort()
first_xyz_full = numpy.matrix([[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose()

second_stamps = second_list.keys()
second_stamps.sort()
second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for b in second_stamps]).transpose()
second_xyz_full_aligned = scale * rot * second_xyz_full + transGT

if args.verbose:
print "compared_pose_pairs %d pairs"%(len(trans_error))

print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error))
print "absolute_translational_error.mean %f m"%numpy.mean(trans_error)
print "absolute_translational_error.median %f m"%numpy.median(trans_error)
print "absolute_translational_error.std %f m"%numpy.std(trans_error)
print "absolute_translational_error.min %f m"%numpy.min(trans_error)
print "absolute_translational_error.max %f m"%numpy.max(trans_error)
print "max idx: %i" %numpy.argmax(trans_error)
else:
# print "%f, %f " % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
# print "%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
print "%f,%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale, numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT)))
# print "%f" % len(trans_error)
if args.verbose2:
print "compared_pose_pairs %d pairs"%(len(trans_error))
print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error))
print "absolute_translational_errorGT.rmse %f m"%numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT))

if args.save_associations:
file = open(args.save_associations,"w")
file.write("\n".join(["%f %f %f %f %f %f %f %f"%(a,x1,y1,z1,b,x2,y2,z2) for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A)]))
file.close()

if args.save:
file = open(args.save,"w")
file.write("\n".join(["%f "%stamp+" ".join(["%f"%d for d in line]) for stamp,line in zip(second_stamps,second_xyz_notscaled_full.transpose().A)]))
file.close()

if args.plot:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from matplotlib.patches import Ellipse
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111)
plot_traj(ax,first_stamps,first_xyz_full.transpose().A,'-',"black","ground truth")
plot_traj(ax,second_stamps,second_xyz_full_aligned.transpose().A,'-',"blue","estimated")
label="difference"
for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A):
ax.plot([x1,x2],[y1,y2],'-',color="red",linewidth=0.5,label=label)
label=""

ax.legend()

ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')

x_diff = first_xyz_full[0].max() - first_xyz_full[0].min()
x_center = first_xyz_full[0].min() + 0.5 * x_diff
y_diff = first_xyz_full[1].max() - first_xyz_full[1].min()
y_center = first_xyz_full[1].min() + 0.5 * y_diff

max_diff = numpy.max([x_diff, y_diff])

ax.set_xlim(x_center-0.55 * max_diff, x_center+0.55 * max_diff)
ax.set_ylim(y_center-0.55 * max_diff, y_center+0.55 * max_diff)
#plt.axis('equal')
plt.tight_layout()
plt.grid()
plt.savefig(args.plot,format="svg")



Loading