-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Feature: Pulsating Sphere Datasets (#68)
* add pulsating sphere datasets * add data
- Loading branch information
1 parent
30f1968
commit 16539c0
Showing
12 changed files
with
2,764 additions
and
4 deletions.
There are no files selected for viewing
2,528 changes: 2,528 additions & 0 deletions
2,528
data/pulsating_sphere/const_f400-500/test/mesh.msh
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
Binary file not shown.
3 changes: 3 additions & 0 deletions
3
data/pulsating_sphere/const_f400-500/test/pressure_0.bp/profiling.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
[ | ||
{ "rank": 0, "start": "Tue_Jul_09_13:06:09_2024", "threads": 1, "bytes": 95300718, "mkdir_mus": 111, "aggregation_mus": 0, "meta_sort_merge_mus": 19193, "minmax_mus": 26637, "memcpy_mus": 5329, "buffering_mus": 64069, "transport_0": { "type": "File_POSIX", "close_mus": 9, "write_mus": 84584, "open_mus": 73}, "transport_1": { "type": "File_POSIX", "close_mus": 0, "write_mus": 3539, "open_mus": 96} } | ||
] |
Large diffs are not rendered by default.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,11 @@ | ||
"""Data contains structures to manage specific dataset implementations.""" | ||
|
||
from nos.data.pulsating_sphere import ConstBoundaryDataset, InverseConstBoundaryDataset | ||
from nos.data.transmission_loss import TLDataset, TLDatasetCompact | ||
|
||
__all__ = [ | ||
"TLDataset", | ||
"TLDatasetCompact", | ||
"ConstBoundaryDataset", | ||
"InverseConstBoundaryDataset", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
import json # noqa: D100 | ||
import pathlib | ||
|
||
import adios2 as ad | ||
import torch | ||
from continuiti.data import OperatorDataset | ||
|
||
|
||
class ConstBoundaryDataset(OperatorDataset): | ||
"""Pulsating sphere dataset with constant valued boundaries.""" | ||
|
||
def __init__( | ||
self, | ||
dataset_path: pathlib.Path, | ||
observations: int = -1, | ||
) -> None: | ||
"""Initialize. | ||
Args: | ||
dataset_path (pathlib.Path): Path to the csv file. | ||
observations (int, optional): Number of observations. Defaults to -1 (all). | ||
""" | ||
tensor_path = dataset_path.joinpath("pressure_0.bp") | ||
with ad.FileReader(str(tensor_path)) as reader: | ||
geom = torch.from_numpy(reader.read("geometry"))[:, :-1] | ||
|
||
pr = [] | ||
pi = [] | ||
for step in range(reader.num_steps()): | ||
pr.append(reader.read("p_real", step_selection=[step, 1])) | ||
pi.append(reader.read("p_imag", step_selection=[step, 1])) | ||
pressure_real = torch.stack([torch.from_numpy(p) for p in pr]) | ||
pressure_imag = torch.stack([torch.from_numpy(p) for p in pi]) | ||
pressure = torch.stack([pressure_real.squeeze(), pressure_imag.squeeze()]) | ||
pressure = pressure.to(torch.get_default_dtype()) | ||
|
||
n_observations = pressure.size(1) | ||
|
||
json_path = dataset_path.joinpath("properties.json") | ||
with json_path.open("r") as file: | ||
properties = json.load(file) | ||
top_samples = torch.tensor(properties["top_samples"]) | ||
right_samples = torch.tensor(properties["right_samples"]) | ||
frequency_samples = torch.tensor(properties["frequency_samples"]).unsqueeze(1) | ||
|
||
x = torch.cat([top_samples, right_samples, frequency_samples], dim=1).unsqueeze(-1) | ||
x_min, _ = torch.min(x, dim=0, keepdim=True) | ||
x_max, _ = torch.max(x, dim=0, keepdim=True) | ||
|
||
u = x | ||
|
||
y = geom.transpose(0, 1).unsqueeze(0).expand(n_observations, -1, -1).to(torch.get_default_dtype()) | ||
v = pressure.transpose(0, 1) | ||
|
||
perm = torch.randperm(n_observations) | ||
idx = perm[:observations] | ||
|
||
super().__init__(x[idx], u[idx], y[idx], v[idx]) | ||
|
||
def __getitem__(self, idx: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | ||
"""Get item at idx from dataset.""" | ||
x_min = torch.tensor([[0.0], [-1.0], [0.0], [-1.0], [400.0]]) | ||
x_scale = torch.tensor([[1.0], [1.0], [1.0], [1.0], [100.0]]) | ||
x = ((self.x[idx] - x_min) / x_scale) * 2.0 - 1.0 | ||
v_max, _ = torch.max(torch.abs(self.v[idx]), dim=-1, keepdim=True) | ||
|
||
return x, x, self.y[idx] * 2.0 - 1.0, self.v[idx] / v_max | ||
|
||
|
||
class InverseConstBoundaryDataset(OperatorDataset): | ||
"""Inverse pulsating sphere dataset with constant boundary conditions.""" | ||
|
||
def __init__( | ||
self, | ||
dataset_path: pathlib.Path, | ||
observations: int = -1, | ||
points: int = 10, | ||
sensors: int = -1, | ||
sensor_idx: torch.Tensor | None = None, | ||
) -> None: | ||
"""Initialize. | ||
Args: | ||
dataset_path (pathlib.Path): path to the dataset bp. | ||
observations (int, optional): Number of observations in the dataset. Defaults to -1 (all). | ||
points (int, optional): Number of points on which the boundary condition is sampled. Defaults to 10. | ||
sensors (int, optional): Number of sensors during training. Defaults to -1 (all). | ||
sensor_idx (torch.Tensor | None, optional): Indices of the sensors used during training. Defaults to None. | ||
""" | ||
tensor_path = dataset_path.joinpath("pressure_0.bp") | ||
with ad.FileReader(str(tensor_path)) as reader: | ||
geom = torch.from_numpy(reader.read("geometry"))[:, :-1] | ||
|
||
pr = [] | ||
pi = [] | ||
for step in range(reader.num_steps()): | ||
pr.append(reader.read("p_real", step_selection=[step, 1])) | ||
pi.append(reader.read("p_imag", step_selection=[step, 1])) | ||
pressure_real = torch.stack([torch.from_numpy(p) for p in pr]) | ||
pressure_imag = torch.stack([torch.from_numpy(p) for p in pi]) | ||
pressure = torch.stack([pressure_real.squeeze(), pressure_imag.squeeze()]) | ||
pressure = pressure.to(torch.get_default_dtype()) | ||
|
||
n_observations = pressure.size(1) | ||
|
||
json_path = dataset_path.joinpath("properties.json") | ||
with json_path.open("r") as file: | ||
properties = json.load(file) | ||
top_samples = torch.tensor(properties["top_samples"]) | ||
right_samples = torch.tensor(properties["right_samples"]) | ||
frequency_samples = torch.tensor(properties["frequency_samples"]).unsqueeze(1) | ||
|
||
x = geom.transpose(0, 1).unsqueeze(0).expand(n_observations, -1, -1).to(torch.get_default_dtype()) | ||
u = pressure.transpose(0, 1) | ||
|
||
if sensors > 0 or sensor_idx is not None: | ||
if sensor_idx is not None: | ||
self.sensor_idx = sensor_idx | ||
else: | ||
self.sensor_idx = torch.randperm(x.size(-1)) | ||
self.sensor_idx = self.sensor_idx[:sensors] | ||
x = x[:, :, self.sensor_idx] | ||
u = u[:, :, self.sensor_idx] | ||
else: | ||
self.sensor_idx = torch.tensor([]) | ||
|
||
y = torch.linspace(0, 1, points).reshape(1, 1, -1) | ||
y = y.expand(n_observations, -1, -1) | ||
|
||
v = torch.cat([top_samples, right_samples, frequency_samples], dim=1).unsqueeze(-1) | ||
self.v_min = torch.tensor([[0.0], [-1.0], [0.0], [-1.0], [400.0]]) | ||
self.v_scale = torch.tensor([[1.0], [1.0], [1.0], [1.0], [100.0]]) | ||
v = v.expand(-1, -1, y.size(-1)) | ||
|
||
perm = torch.randperm(n_observations) | ||
idx = perm[:observations] | ||
|
||
super().__init__(x[idx], u[idx], y[idx], v[idx]) | ||
|
||
def __getitem__(self, idx: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | ||
"""Get item at idx from dataset.""" | ||
x = self.x[idx] * 2.0 - 1.0 | ||
u_max, _ = torch.max(torch.abs(self.u[idx]), dim=-1, keepdim=True) | ||
u = self.u[idx] / u_max | ||
|
||
y = self.y[idx] * 2.0 - 1.0 | ||
v = ((self.v[idx] - self.v_min) / self.v_scale) * 2.0 - 1.0 | ||
|
||
return x, u, y, v |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
from nos.data import ConstBoundaryDataset, InverseConstBoundaryDataset | ||
|
||
|
||
class TestPulsatingSphereDataset: | ||
def test_can_initialize(self, pressure_file): | ||
dataset = ConstBoundaryDataset( | ||
dataset_path=pressure_file, | ||
observations=42, | ||
) | ||
|
||
assert isinstance(dataset, ConstBoundaryDataset) | ||
|
||
def test_has_populated_tensors(self, pressure_file): | ||
n_observations = 42 | ||
dataset = ConstBoundaryDataset( | ||
dataset_path=pressure_file, | ||
observations=n_observations, | ||
) | ||
|
||
for tsr in [dataset.x, dataset.y, dataset.u, dataset.v]: | ||
assert tsr.size(0) == n_observations | ||
|
||
assert dataset.x.size(-1) == dataset.u.size(-1) | ||
assert dataset.y.size(-1) == dataset.v.size(-1) | ||
|
||
|
||
class TestInversePulsatingSphereDataset: | ||
def test_can_initialize(self, pressure_file): | ||
dataset = InverseConstBoundaryDataset( | ||
dataset_path=pressure_file, | ||
observations=42, | ||
) | ||
|
||
assert isinstance(dataset, InverseConstBoundaryDataset) | ||
|
||
def test_has_populated_tensors(self, pressure_file): | ||
n_observations = 42 | ||
dataset = ConstBoundaryDataset( | ||
dataset_path=pressure_file, | ||
observations=n_observations, | ||
) | ||
|
||
for tsr in [dataset.x, dataset.y, dataset.u, dataset.v]: | ||
assert tsr.size(0) == n_observations | ||
|
||
assert dataset.x.size(-1) == dataset.u.size(-1) | ||
assert dataset.y.size(-1) == dataset.v.size(-1) |