Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
Ibrahim5aad authored Feb 23, 2020
0 parents commit d6aeb5d
Show file tree
Hide file tree
Showing 3 changed files with 403 additions and 0 deletions.
291 changes: 291 additions & 0 deletions hungarian_method.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,291 @@
import sys
from typing import NewType, Sequence, Tuple
Matrix = NewType('Matrix', Sequence[Sequence[int]])

class Hungarian:

def __init__(self):
self.mat = None
self.row_covered = []
self.col_covered = []
self.starred = None
self.n = 0
self.Z0_r = 0
self.Z0_c = 0
self.series = None

def solve(self, cost_matrix: Matrix):
self.mat = cost_matrix
self.n = len(self.mat)
self.row_covered = [False for i in range(self.n)]
self.col_covered = [False for i in range(self.n)]
self.Z0_r = 0
self.Z0_c = 0
self.series = [[0 for j in range(2)] for j in range(self.n*2)]
self.starred = [[0 for j in range(self.n)] for j in range(self.n)]

done = False
step = 1

steps = { 1 : self.step1,
2 : self.step2,
3 : self.step3,
4 : self.step4,
5 : self.step5,
6 : self.step6
}

while not done:
try:
func = steps[step]
step = func()
except:
done = True

results = []
for i in range(self.n):
for j in range(self.n):
if self.starred[i][j] == 1:
results += [(i, j)]

return results

def step1(self):
"""
For each row of the matrix, find the smallest element and
subtract it from every element in its row. Go to Step 2.
"""
n = self.n
for i in range(n):
vals = [x for x in self.mat[i]]
minval = min(vals)
for j in range(n):
self.mat[i][j] -= minval
return 2

def step2(self):
"""
Find a zero (Z) in the resulting matrix. If there is no starred
zero in its row or column, star Z. Repeat for each element in the
matrix. Go to Step 3.
"""
for i in range(self.n):
for j in range(self.n):
if (self.mat[i][j] == 0) and \
(not self.col_covered[j]) and \
(not self.row_covered[i]):
self.starred[i][j] = 1
self.col_covered[j] = True
self.row_covered[i] = True
break

self.__clear_covers()
return 3

def step3(self):
"""
Cover each column containing a starred zero. If K columns are
covered, the starred zeros describe a complete set of unique
assignments. In this case, Go to DONE, otherwise, Go to Step 4.
"""
n = self.n
count = 0
for i in range(n):
for j in range(n):
if self.starred[i][j] == 1 and not self.col_covered[j]:
self.col_covered[j] = True
count += 1

if count >= n:
step = 7 # done
else:
step = 4

return step

def step4(self):
"""
Find a noncovered zero and prime it. If there is no starred zero
in the row containing this primed zero, Go to Step 5. Otherwise,
cover this row and uncover the column containing the starred
zero. Continue in this manner until there are no uncovered zeros
left. Save the smallest uncovered value and Go to Step 6.
"""
step = 0
done = False
row = 0
col = 0
star_col = -1
while not done:
(row, col) = self.__find_a_zero(row, col)
if row < 0:
done = True
step = 6
else:
self.starred[row][col] = 2
star_col = self.__find_star_in_row(row)
if star_col >= 0:
col = star_col
self.row_covered[row] = True
self.col_covered[col] = False
else:
done = True
self.Z0_r = row
self.Z0_c = col
step = 5

return step

def step5(self):
"""
Construct a series of alternating primed and starred zeros as
follows. Let Z0 represent the uncovered primed zero found in Step 4.
Let Z1 denote the starred zero in the column of Z0 (if any).
Let Z2 denote the primed zero in the row of Z1 (there will always
be one). Continue until the series terminates at a primed zero
that has no starred zero in its column. Unstar each starred zero
of the series, star each primed zero of the series, erase all
primes and uncover every line in the matrix. Return to Step 3
"""
count = 0
series = self.series
series[count][0] = self.Z0_r
series[count][1] = self.Z0_c
done = False
while not done:
row = self.__find_star_in_col(series[count][1])
if row >= 0:
count += 1
series[count][0] = row
series[count][1] = series[count-1][1]
else:
done = True

if not done:
col = self.__find_prime_in_row(series[count][0])
count += 1
series[count][0] = series[count-1][0]
series[count][1] = col

self.__convert_series(series, count)
self.__clear_covers()
self.__erase_primes()
return 3

def step6(self):
"""
Add the value found in Step 4 to every element of each covered
row, and subtract it from every element of each uncovered column.
Return to Step 4 without altering any stars, primes, or covered
lines.
"""
minval = self.__find_smallest()
for i in range(self.n):
for j in range(self.n):
if self.row_covered[i]:
self.mat[i][j] += minval
if not self.col_covered[j]:
self.mat[i][j] -= minval
return 4

def __find_smallest(self):
"""Find the smallest uncovered value in the matrix."""
minval = sys.maxsize
for i in range(self.n):
for j in range(self.n):
if (not self.row_covered[i]) and (not self.col_covered[j]):
if minval > self.mat[i][j]:
minval = self.mat[i][j]
return minval

def __find_a_zero(self, i0: int = 0, j0: int = 0):
"""Find the first uncovered element with value 0"""
row = -1
col = -1
i = i0
n = self.n
done = False

while not done:
j = j0
while True:
if (self.mat[i][j] == 0) and \
(not self.row_covered[i]) and \
(not self.col_covered[j]):
row = i
col = j
done = True
j = (j + 1) % n
if j == j0:
break
i = (i + 1) % n
if i == i0:
done = True

return (row, col)

def __find_star_in_row(self, row: Sequence[int]):
"""
Find the first starred element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.starred[row][j] == 1:
col = j
break

return col

def __find_star_in_col(self, col: Sequence[int]):
"""
Find the first starred element in the specified col. Returns
the row index, or -1 if no starred element was found.
"""
row = -1
for i in range(self.n):
if self.starred[i][col] == 1:
row = i
break

return row

def __find_prime_in_row(self, row):
"""
Find the first prime element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.starred[row][j] == 2:
col = j
break

return col


def __convert_series(self,
series: Matrix,
count: int):
"""
Unstar each starred zero
of the series, star each primed zero of the series
"""
for i in range(count+1):
if self.starred[series[i][0]][series[i][1]] == 1:
self.starred[series[i][0]][series[i][1]] = 0
else:
self.starred[series[i][0]][series[i][1]] = 1


def __clear_covers(self):
for i in range(self.n):
self.row_covered[i] = False
self.col_covered[i] = False


def __erase_primes(self):
for i in range(self.n):
for j in range(self.n):
if self.starred[i][j] == 2:
self.starred[i][j] = 0
70 changes: 70 additions & 0 deletions main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import tkinter as tk
from tkinter import ttk
import hungarian_method as hm
from matrix_input import *


class main(tk.Frame):
def __init__(self, parent):
tk.Frame.__init__(self, parent)
self.win1 = tk.Toplevel()
self.win1.geometry("350x50")
self.win1.attributes('-topmost', 'true')
btn = ttk.Button(self.win1, text="Create", command=self.win1_submit)
self.e1 = tk.Entry(self.win1, width = 5)
self.lbl = tk.Label(self.win1, text = "Enter the size of the matrix: ")
self.lbl.grid(row=1, column=1)
self.e1.grid(row=1, column=2)
btn.grid(row=1, column=3, padx=10, pady=2)


def win1_submit(self):
self.table = MatrixInput(self, int(self.e1.get()), int(self.e1.get()))
self.solve = ttk.Button(self, text="Solve", width=6, command=self.on_submit)
self.parser = ttk.Button(self, text="Parser", width=6, command=self.on_parser)
self.resultLabel = tk.Label(self, text = "", font=("Helvetica", 13), padx=30)
self.table.grid(row=1, column=1, padx=30, pady=20)
self.solve.grid(row=1, column= 2)
self.parser.grid(row=1, column= 3, padx=20)
self.resultLabel.grid(row=5,column= 1)
self.grid_columnconfigure(index=0, weight=1)
self.grid_rowconfigure(index=2, weight=1)
self.win1.destroy()

def on_submit(self):
solver = hm.Hungarian()
sol = solver.solve(self.table.get())
self.resultLabel["text"] = 'The Assignment is: \n'
for i in range(solver.n):
self.resultLabel["text"] += ("Assignee #"+str(sol[i][0]+1)+" --> Task #"+str(sol[i][1]+1)+"\n")


def on_parser(self):
self.win2 = tk.Toplevel()
self.win2.attributes('-topmost', 'true')
self.tb = tk.Text(self.win2, height=10, width=30)
self.parse = ttk.Button(self.win2, text="Parse", width=5, command=self.on_parse)
self.tb.grid(row=1, column=1, padx=30, pady=30)
self.parse.grid(row=1, column=2, padx=30)
self.win2.grid_columnconfigure(index=0, weight=1)
self.win2.grid_rowconfigure(index=2, weight=1)


def on_parse(self):
matStr = self.tb.get("1.0",'end-1c').split("--")
row = 0
col = 0
for j in range(len(matStr)):
elements = matStr[j].split("-")
for i in elements:
self.table._entry[(row, col)].insert(0, str(i))
col =col+1
row = row + 1
col = 0


root = tk.Tk()
root.title("Hungarian Method")
#root.geometry("400x400")
main(root).pack(side="top", fill="both", expand=True)
root.mainloop()
Loading

0 comments on commit d6aeb5d

Please sign in to comment.