Releases: INM-6/networkunit
Releases · INM-6/networkunit
Networkunit 0.2.2
NetworkUnit 0.2.1
Patch release to update the package dependencies. Also, this release adopts the pyproject.toml convention for the package description.
NetworkUnit 0.2.0
- parameter handling
generate_prediction()
and other custom class function no longer take optional extra parameter as arguments, but only useself.params
- no class function should accept arguments that override class parameters
default_params
test class attribute are inherited by usingdefault_params = {**parent.default_params, 'new_param':0}
- caching
- improved caching of intermediate test- and simulation results, e.g. for the correlation matrix
- improving backend definitions
- parallelization
- automatic parallelization for loops over spiketrains or lists of spiketrains. To use set
params['parallel executor']
toProcessPoolExecutor()
,MPIPoolExecutor()
, orMPICommExecutor()
(see documentation in Elephant package)
- automatic parallelization for loops over spiketrains or lists of spiketrains. To use set
- various bug fixes
- new features
- adding the
joint_test
class that enables the combination of multiple neuron-wise tests for multidimensional testing with the Wasserstein score
- adding the
- new test classes
- joint_test
- power_spectrum_test
- freqband_power_test
- timescale_test
- avg_std_correlation_test
- new score classes
- wasserstein_distance
- eigenangle (see publication Gutzen et al. 2022
NetworkUnit 0.1.2
This patch contains:
- a fix for an issue where the setup script was failing to properly install the backend directory (see issue #20)
NetworkUnit 0.1.1
This patch contains:
-
a new backend class, which handles the storage of generated predictions in memory or on disk. To make use of it just set
backend='storage'
in the model instantiation. By default predictions are stored in memory. To change that setmodel.get_backend().use_disk_cache = True
andmodel.get_backend().use_memory_cache = False
. -
various bug fixes
-
updated requirements.txt and environment.yaml