Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

111 stream module multi model handling #113

Merged
merged 6 commits into from
Oct 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "streamsight"
version = "0.2.10"
version = "0.2.11"
description = "A toolkit for offline evaluation of Recommender Systems"
authors = ["Ng Tze Kean <[email protected]>"]
readme = "README.md"
Expand Down
18 changes: 13 additions & 5 deletions streamsight/evaluators/evaluator_stream.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,8 +242,14 @@ def get_data(self, algo_id: UUID) -> InteractionMatrix:
if not self.has_started:
raise ValueError(f"call start_stream() before requesting data for algorithm {algo_id}")

logger.debug(f"Getting data for algorithm {algo_id}")

# check if we need to move to the next window
if self.setting.is_sliding_window_setting and self.status_registry.is_all_predicted():
if (
self.setting.is_sliding_window_setting
and self.status_registry.is_all_predicted()
and self.status_registry.is_all_same_data_segment()
):
self.user_item_base._reset_unknown_user_item_base()
incremental_data = self.setting.next_incremental_data()
self.user_item_base._update_known_user_item_base(incremental_data)
Expand Down Expand Up @@ -303,6 +309,7 @@ def get_unlabeled_data(self, algo_id: UUID) -> Optional[InteractionMatrix]:
:return: The unlabeled data for prediction
:rtype: Optional[InteractionMatrix]
"""
logger.debug(f"Getting unlabeled data for algorithm {algo_id}")
status = self.status_registry[algo_id].state
if status in [AlgorithmStateEnum.READY, AlgorithmStateEnum.PREDICTED]:
return self._unlabeled_data_cache
Expand Down Expand Up @@ -344,6 +351,7 @@ def submit_prediction(self, algo_id: UUID, X_pred: Union[csr_matrix, Interaction
:type X_pred: csr_matrix
:raises ValueError: If X_pred is not an InteractionMatrix or csr_matrix
"""
logger.debug(f"Submitting prediction for algorithm {algo_id}")
status = self.status_registry[algo_id].state

if status == AlgorithmStateEnum.READY:
Expand Down Expand Up @@ -428,15 +436,15 @@ def _cache_evaluation_data(self) -> None:
self._run_step += 1

logger.debug(f"Caching evaluation data for step {self._run_step}")

try:
unlabeled_data, ground_truth_data, _ = self._get_evaluation_data()
except EOWSetting as e:
raise e

self._unlabeled_data_cache = unlabeled_data
self._ground_truth_data_cache = ground_truth_data

logger.debug(f"Data cached for step {self._run_step} complete")

def _evaluate(self, algo_id: UUID, X_pred: csr_matrix) -> None:
Expand All @@ -456,7 +464,7 @@ def _evaluate(self, algo_id: UUID, X_pred: csr_matrix) -> None:
"""
X_true = self._ground_truth_data_cache.get_users_n_first_interaction(self.metric_k)
X_true = X_true.binary_values

X_pred = self._prediction_shape_handler(X_true.shape, X_pred)
algorithm_name = self.status_registry.get_algorithm_identifier(algo_id)

Expand All @@ -469,5 +477,5 @@ def _evaluate(self, algo_id: UUID, X_pred: csr_matrix) -> None:
metric:Metric = metric_cls(timestamp_limit=self._current_timestamp)
metric.calculate(X_true, X_pred)
self._acc.add(metric=metric, algorithm_name=algorithm_name)

logger.debug(f"Prediction evaluated for algorithm {algo_id} complete")
6 changes: 6 additions & 0 deletions streamsight/matrix/interaction_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -460,6 +460,12 @@ def __sub__(self, im: "InteractionMatrix") -> "InteractionMatrix":
def __repr__(self):
return repr(self._df)

def __eq__(self, value: object) -> bool:
if not isinstance(value, InteractionMatrix):
logger.debug(f"Comparing {type(value)} with InteractionMatrix is not supported")
return False
return self._df.equals(value._df)

@overload
def items_in(self, I: Set[int], inplace=False) -> "InteractionMatrix": ...
@overload
Expand Down
6 changes: 6 additions & 0 deletions streamsight/registries/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,12 @@ def update(self, algo_id: UUID, state: AlgorithmStateEnum, data_segment: Optiona
def is_all_predicted(self) -> bool:
return self.status_counts[AlgorithmStateEnum.PREDICTED] == len(self.registered)

def is_all_same_data_segment(self) -> bool:
data_segments = set()
for key in self:
data_segments.add(self[key].data_segment)
return len(data_segments) == 1

def all_algo_states(self) -> Dict[str, AlgorithmStateEnum]:
states = {}
for key in self:
Expand Down
30 changes: 24 additions & 6 deletions test/evaluator/test_full_run.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import pytest
from streamsight.datasets import TestDataset
from streamsight.settings import SlidingWindowSetting, SingleTimePointSetting
from streamsight.evaluators import EvaluatorBuilder, EvaluatorStreamerBuilder
from streamsight.evaluators import EvaluatorPipelineBuilder, EvaluatorStreamerBuilder

@pytest.fixture()
def sliding_window():
Expand All @@ -25,28 +25,46 @@ def single_time_point():
return setting

class TestFullRun:
def test_sliding_window(self, sliding_window):
b = EvaluatorBuilder()
def test_sliding_window_without_unknown_user_item(self, sliding_window):
b = EvaluatorPipelineBuilder(True,True)
b.add_setting(sliding_window)
b.add_algorithm("ItemKNNIncremental", {"K": 1})
b.add_metric("PrecisionK")
b.add_metric("RecallK")
evaluator = b.build()
evaluator.run()

def test_sliding_window_without_unknown_user(self, sliding_window):
b = EvaluatorPipelineBuilder(True,False)
b.add_setting(sliding_window)
b.add_algorithm("ItemKNNIncremental", {"K": 1})
b.add_metric("PrecisionK")
b.add_metric("RecallK")
evaluator = b.build()
evaluator.run()

def test_sliding_window_with_unknowns(self, sliding_window):
b = EvaluatorPipelineBuilder(False,False)
b.add_setting(sliding_window)
b.add_algorithm("ItemKNNIncremental", {"K": 1})
b.add_metric("PrecisionK")
b.add_metric("RecallK")
evaluator = b.build()
evaluator.run()

def test_single_time_point(self, single_time_point):
b = EvaluatorBuilder()
b = EvaluatorPipelineBuilder()
b.add_setting(single_time_point)
b.add_algorithm("ItemKNNIncremental", {"K": 1})
b.add_metric("PrecisionK")
b.add_metric("RecallK")
b.add_setting(single_time_point)
evaluator = b.build()
evaluator.run()

def test_stream(self, sliding_window):
b = EvaluatorStreamerBuilder()
b.add_metric("PrecisionK")
b.add_setting(sliding_window)
b.add_metric("PrecisionK")
evaluator = b.build()

from streamsight.algorithms import ItemKNNIncremental
Expand Down
65 changes: 65 additions & 0 deletions test/evaluator/test_stream.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
import pytest
from streamsight.settings.sliding_window_setting import SlidingWindowSetting
from test.conftest import BACKGROUND_T, WINDOW_SIZE, SEED, N_SEQ_DATA, SEED
from streamsight.evaluators import EvaluatorStreamerBuilder
from streamsight.algorithms import ItemKNNIncremental


@pytest.fixture()
def setting(test_dataset):
data = test_dataset.load()
setting_obj = SlidingWindowSetting(background_t=BACKGROUND_T,
window_size=WINDOW_SIZE,
n_seq_data=N_SEQ_DATA,
seed=SEED)
setting_obj.split(data)
return setting_obj

@pytest.fixture()
def k():
return 10

class TestStreamer():
def test_algorithm_in_different_data_segment_handling(self, setting, k):

builder = EvaluatorStreamerBuilder()
builder.add_setting(setting)
builder.set_metric_K(k)
builder.add_metric("PrecisionK")
evaluator = builder.build()

algo = ItemKNNIncremental(K=10)
algo_id = evaluator.register_algorithm(algo)
print(algo_id)

from streamsight.algorithms import ItemKNNStatic
external_model = ItemKNNIncremental(K=10)
external_model_id = evaluator.register_algorithm(external_model)
print(external_model_id)

evaluator.start_stream()

# first iteration
data = evaluator.get_data(algo_id)
algo.fit(data)
unlabeled_data = evaluator.get_unlabeled_data(algo_id)
prediction = algo.predict(unlabeled_data)
evaluator.submit_prediction(algo_id, prediction)
data = evaluator.get_data(external_model_id)
external_model.fit(data)
unlabeled_data = evaluator.get_unlabeled_data(external_model_id)
prediction = external_model.predict(unlabeled_data)
evaluator.submit_prediction(external_model_id, prediction)

# second iteration
print("Second iteration")
data = evaluator.get_data(algo_id)
algo.fit(data)
unlabeled_data = evaluator.get_unlabeled_data(algo_id)
prediction = algo.predict(unlabeled_data)
evaluator.submit_prediction(algo_id, prediction)


to_validate_data = evaluator.get_data(external_model_id)

assert(to_validate_data == data)
Loading