Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Jn cran #118

Merged
merged 3 commits into from
Dec 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion R/CreateSpacetimeFolds.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
#' should be similar in each fold (class="LUC").
#' @note Standard k-fold cross-validation can lead to considerable misinterpretation in spatial-temporal modelling tasks. This function can be used to prepare a Leave-Location-Out, Leave-Time-Out or Leave-Location-and-Time-Out cross-validation as target-oriented validation strategies for spatial-temporal prediction tasks. See Meyer et al. (2018) for further information.
#' @author Hanna Meyer
#' @seealso \code{\link{trainControl}},\code{\link{ffs}}, \code{\link{nndm}}
#' @seealso \code{\link[caret]{trainControl}},\code{\link{ffs}}, \code{\link{nndm}}
#' @references
#' Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software 101: 1-9.
#' @examples
Expand Down
20 changes: 10 additions & 10 deletions R/bss.R
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
#' Best subset feature selection
#' @description Evaluate all combinations of predictors during model training
#' @param predictors see \code{\link{train}}
#' @param response see \code{\link{train}}
#' @param method see \code{\link{train}}
#' @param metric see \code{\link{train}}
#' @param maximize see \code{\link{train}}
#' @param predictors see \code{\link[caret]{train}}
#' @param response see \code{\link[caret]{train}}
#' @param method see \code{\link[caret]{train}}
#' @param metric see \code{\link[caret]{train}}
#' @param maximize see \code{\link[caret]{train}}
#' @param globalval Logical. Should models be evaluated based on 'global' performance? See \code{\link{global_validation}}
#' @param trControl see \code{\link{train}}
#' @param tuneLength see \code{\link{train}}
#' @param tuneGrid see \code{\link{train}}
#' @param trControl see \code{\link[caret]{train}}
#' @param tuneLength see \code{\link[caret]{train}}
#' @param tuneGrid see \code{\link[caret]{train}}
#' @param seed A random number
#' @param verbose Logical. Should information about the progress be printed?
#' @param ... arguments passed to the classification or regression routine
Expand All @@ -33,8 +33,8 @@
#' Note that bss is very slow since all combinations of variables are tested.
#' A more time efficient alternative is the forward feature selection (\code{\link{ffs}}).
#' @author Hanna Meyer
#' @seealso \code{\link{train}},\code{\link{ffs}},
#' \code{\link{trainControl}},\code{\link{CreateSpacetimeFolds}},
#' @seealso \code{\link[caret]{train}},\code{\link{ffs}},
#' \code{\link[caret]{trainControl}},\code{\link{CreateSpacetimeFolds}},
#' \code{\link{nndm}}
#' @examples
#' \dontrun{
Expand Down
2 changes: 1 addition & 1 deletion R/errorProfiles.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
#' @param locations Optional. sf object for the training data used in model. Only used if variable=="geodist". Note that they must be in the same order as model$trainingData.
#' @param variable Character. Which dissimilarity or distance measure to use for the error metric. Current options are "DI" or "LPD"
#' @param multiCV Logical. Re-run model fitting and validation with different CV strategies. See details.
#' @param window.size Numeric. Size of the moving window. See \code{\link{rollapply}}.
#' @param window.size Numeric. Size of the moving window. See \code{\link[zoo]{rollapply}}.
#' @param calib Character. Function to model the DI/LPD~performance relationship. Currently lm and scam are supported
#' @param length.out Numeric. Only used if multiCV=TRUE. Number of cross-validation folds. See details.
#' @param method Character. Method used for distance calculation. Currently euclidean distance (L2) and Mahalanobis distance (MD) are implemented but only L2 is tested. Note that MD takes considerably longer. See ?aoa for further explanation
Expand Down
20 changes: 10 additions & 10 deletions R/ffs.R
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
#' Forward feature selection
#' @description A simple forward feature selection algorithm
#' @param predictors see \code{\link{train}}
#' @param response see \code{\link{train}}
#' @param method see \code{\link{train}}
#' @param metric see \code{\link{train}}
#' @param maximize see \code{\link{train}}
#' @param predictors see \code{\link[caret]{train}}
#' @param response see \code{\link[caret]{train}}
#' @param method see \code{\link[caret]{train}}
#' @param metric see \code{\link[caret]{train}}
#' @param maximize see \code{\link[caret]{train}}
#' @param globalval Logical. Should models be evaluated based on 'global' performance? See \code{\link{global_validation}}
#' @param withinSE Logical Models are only selected if they are better than the
#' currently best models Standard error
#' @param minVar Numeric. Number of variables to combine for the first selection.
#' See Details.
#' @param trControl see \code{\link{train}}
#' @param tuneLength see \code{\link{train}}
#' @param tuneGrid see \code{\link{train}}
#' @param trControl see \code{\link[caret]{train}}
#' @param tuneLength see \code{\link[caret]{train}}
#' @param tuneGrid see \code{\link[caret]{train}}
#' @param seed A random number used for model training
#' @param cores Numeric. If > 2, mclapply will be used. see \code{\link{mclapply}}
#' @param verbose Logical. Should information about the progress be printed?
Expand Down Expand Up @@ -53,8 +53,8 @@
#' See Meyer et al. (2018) and Meyer et al. (2019) for further details.
#'
#' @author Hanna Meyer
#' @seealso \code{\link{train}},\code{\link{bss}},
#' \code{\link{trainControl}},\code{\link{CreateSpacetimeFolds}},\code{\link{nndm}}
#' @seealso \code{\link[caret]{train}},\code{\link{bss}},
#' \code{\link[caret]{trainControl}},\code{\link{CreateSpacetimeFolds}},\code{\link{nndm}}
#' @references
#' \itemize{
#' \item Gasch, C.K., Hengl, T., Gräler, B., Meyer, H., Magney, T., Brown, D.J. (2015): Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+T: the Cook Agronomy Farm data set. Spatial Statistics 14: 70-90.
Expand Down
4 changes: 2 additions & 2 deletions R/global_validation.R
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#' Evaluate 'global' cross-validation
#' @description Calculate validation metric using all held back predictions at once
#' @param model an object of class \code{\link{train}}
#' @return regression (\code{\link{postResample}}) or classification (\code{\link{confusionMatrix}}) statistics
#' @param model an object of class \code{\link[caret]{train}}
#' @return regression (\code{\link[caret]{postResample}}) or classification (\code{\link[caret]{confusionMatrix}}) statistics
#' @details Relevant when folds are not representative for the entire area of interest.
#' In this case, metrics like R2 are not meaningful since it doesn't reflect the general ability of
#' the model to explain the entire gradient of the response.
Expand Down
2 changes: 1 addition & 1 deletion R/nndm.R
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
#' (distances for G function construction during LOO CV), Gjstar (distances
#' for modified G function during NNDM LOO CV), phi (landscape autocorrelation range).
#' indx_train and indx_test can directly be used as "index" and "indexOut" in
#' caret's \code{\link{trainControl}} function or used to initiate a custom validation strategy in mlr3.
#' caret's \code{\link[caret]{trainControl}} function or used to initiate a custom validation strategy in mlr3.
#'
#' @details NNDM proposes a LOO CV scheme such that the nearest neighbour distance distribution function between the test and training data during the CV process is matched to the nearest neighbour
#' distance distribution function between the prediction and training points. Details of the method can be found in Milà et al. (2022).
Expand Down
2 changes: 1 addition & 1 deletion man/CreateSpacetimeFolds.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

20 changes: 10 additions & 10 deletions man/bss.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/errorProfiles.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

20 changes: 10 additions & 10 deletions man/ffs.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 2 additions & 2 deletions man/global_validation.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/nndm.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

26 changes: 18 additions & 8 deletions vignettes/cast01-CAST-intro.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -253,14 +253,24 @@ Still it is required to analyse if the model can be applied to the entire study
```{r, message = FALSE, warning=FALSE}
### AOA for which the spatial CV error applies:
AOA <- aoa(predictors_sp,ffsmodel,LPD = TRUE,verbose=FALSE)
tm_shape(prediction) +
tm_raster(col.scale = tm_scale_continuous(values = "-viridis"),
col.legend = tm_legend(title = "Species \nrichness")) +
tm_shape(AOA$AOA) +
tm_raster(col.scale = tm_scale_categorical(values = c("grey", "#00000000")),
col.legend = tm_legend(show = FALSE)) +
tm_layout(frame = FALSE) +
tm_add_legend(type="polygons", fill = "grey", labels = "Outside \nAOA")

# tmap3
tm_shape(prediction)+
tm_raster(title="Species \nrichness",style="cont")+
tm_shape(AOA$AOA)+
tm_raster(palette=c("1"=NA,"0"="grey"),style="cat",legend.show = FALSE)+
tm_layout(frame=FALSE,legend.outside = TRUE)+
tm_add_legend(type="fill",col="grey",border.lwd=0, labels="Outside \nAOA")

# tmap4
# tm_shape(prediction) +
# tm_raster(col.scale = tm_scale_continuous(values = "-viridis"),
# col.legend = tm_legend(title = "Species \nrichness")) +
# tm_shape(AOA$AOA) +
# tm_raster(col.scale = tm_scale_categorical(values = c("grey", "#00000000")),
# col.legend = tm_legend(show = FALSE)) +
# tm_layout(frame = FALSE) +
# tm_add_legend(type="polygons", fill = "grey", labels = "Outside \nAOA")
```

The figure shows in grey areas that are outside the area of applicability, hence predictions should not be considered for these locations. See tutorial on the AOA in this package for more information.
Expand Down
Loading